
STATIS T ICAL ESTIMATE AND CORRECTION OF THE LEP OPTICS IMPERFECTIONS 

Statistical estimates of 
linear lattice functions (Twisr 

the perturbation of the 
; parameters, dispersion 

and betatron coupling) are made tor LEP; they 
complement imperfection studies by simulation and 
provide a better understanding of the relative 
importances of the imperfection sources. They allow in 
addition to draw some scaling laws which demonstrate 
why imperfections do not simply scale with machine 
size. Estimates of the resulting luminosity losses help 
in defining the correction needs and their resolution. 
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1. Introduction 

The LEP optics design was done in two stages : 
first a careful optimization of the perfect optics and 
second an analysis of its sensitivity to component and 
alignment imperfections, so as to check the viability 
of the optics and specify construction tolerances. 
Given the large number of LEP components, the second 
study lent itself naturally to computer simulations. 

Although the method was sufficient for the above- 
mentionned aims, it was found necessary to clarify 
analytically the relationships between the component, 
alignment and optics imperfections; the aim was to 
crosscheck the simulation results and to understand the 
relative insensitivity of LEP to imperfections as 
compared to other machines. 

2. Estimates of the lattice imperfections 

2.1 The LEP imperfections 

Whilst the systematic imperfections can be compen- 
sated by an adjustment of the magnet excitations, the 
random imperfections perturb the linear dynamics which 
is considered here; their estimates for LEP are [l] : 

- Dipolar fieldaydrors ABxly/Bp, 
- Quadrupole sextupole misalignment <AxQ>, 

<Ay >, <Axs>, <Ays> = 0.14 mm, 
- Qua rupole gradient dispersion <AK/K> = 5 10w4, 3 
- Quadrupole lateral tilt <A$> = 0.24 mrad, 
- Quadrupole component of the dipoles <Kd> = IO-%-', 
- Closed orbit deviations <xc0 , > <yco> = 0.75 mm. 

Other magnetic sources, such as the spurious sextupole 
field of the strong quadrupoles are negligible. The 
discontinuous replacement of radiated energy creates 
imperfect orbits; the consequences are presented in 
Sect. 2.4. 

2.2 Expressions of the perturbed lattice functions 

The rns deviations of the lattice functions are 
derived [2,3,4] directly from the equations of motion, 
from the Courant-Snyder formulae or from the theory of 
betatron coupling [5]. Assuming reasonable hypotheses 
on the error crosscorrelations yields the expressions 
for D, the dispersion, dB/B the Twiss parameter beating 
and ]cf/ the modulus of the closest coupling resonance 
vector : 

[A,.(.r ,.,, )? + H,.(A.r) $ ( 'r(/,~,r)7 + 

(h,)? = (VW)? + $gil [.4z,(!/,.,)2 + I$(&,)‘! I I /),(AI:,)‘q 
‘I 

(4/Q = h,;,,!‘,(2[K,(~‘z + ,‘;/((A.r,c)2 + (.v.,,)‘, + Gyl<J?] 

I I 
(r*)” = -$(Arl’)? + -(,yi<-~)‘~] 

2 
with 

n ,,I~, = CrZrr,,l,j,s,c.u,~ i'( I(~Q ~ fi'l.5V.)' 

b/s = CfJL,,, i'( lif,J)" + cs;s,u7. /?( fi'l.5 I), )? 

(:v = &I:'i\r,) /?,.(l).TJ,l)2 

1) = C(p.,,~, P(W~JLY 

I:', - -&ria,,!PI'1(21~ 

I$ = ~s~,~,y7~(/~K'lc)~ 

(: = 1:~ C, 7lpii, 

II = &,' ,I,) /?.J,,( /<l(j)2 

I - ccc,u,,, 'ir/$,( fi'lv)" 

lB,lQ,lS length of the magnets; K' normalized 
sextupole; ni number of dipoles blocks at the same 
ii position. 

Other interesting quantities may be derived from 
<dB/B> [3] : 

- the phase advance error in a superperiod S, 

(AGS) = 

J 

T 
s $11, ‘hrQ( y 

- the error of the Twiss parameter o 

{a) = &z(y) 

- the rms shift of the low-beta in the insertion 

(s') = /j*(Aw*) 

- the asymmetry of beta in the insertion quadrupoles 

(A!Lm) = ,l ~,,,.(a0 ') 

2.3 Numerical results 

Calculating these expressions for LEP yields the 
results given in Tables 1 and 2. 

These figures, which confirm the simulation 
results [I], seem indeed low; the orbit deviations 
appear to be the most important imperfections, and the 
contribution of the insertions dominates. 

2.4 Discontinuous replacement of radiated energy 

This effect produces distinct imperfect closed 
orbit for the electrons ant\erp;sifrons [6];. due to 
symmetry and averaging, 1s essentially no 
consequence on the linear optics parameters, except on 

etween interaction points; it is 
that the systematic phase advance 
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Table 1 - Linear optics parameters 

Imperf?ctioti 

- 

plane 
_--_--- 
Orbit in QUAD 

ands'or SEXT 
total 
lattice 
insertions 

Grad. errors 
in QUAD 

total 
lattice 
insertions 

QUAD tilt 

Kd in DIPOLES 

QUAD alignm. 
SEXT alignm. 

TOTAL 

<D> at s[mm] <d3/e> 
_--_.-... 

X Y X 

-_. 

36.0 79.1 0.027 
27.4 45.4 
23.5 64.8 

_--. 

19.4 0.018 
0.013 -l----L 0.013 

22.1 

Y 
-__ 

0.037 

0.020 
0.011 
0.017 

0.009 

0.007 

0.044 

-- 
\+ 

0.013 

0.009 

0.015 

Table 2 - Optics asymmetries 

~~~~ 

difference between consecutive LEP quadrants is 
numerically equal to the chromatic contribution of a 
low-8 insertion, i.e. : 

J,c> - + J--,,,\ #if\ I, = 0.0 15 /(I II 0 I 

3. Scaling laws for lattice imperfections 

As mentioned above, apart from the effect 
described in Sect. 2.4, the LEP optics imperfections 
appear to be small compared to existing electron 
storage rings. They obviously do not scale with the 
accelerator size or design energy as one would expect. 

In order to check the sensitivity of the optics to 
imperfections as a function of the machine design 
energy g (or size C), we have considered a simplified 
storage ring model [7] : let us assume a ring made up 
of ncel,l FODO cells and nins low-~ insertions; the 
coefficients A,B,...I given above are the 
"amplification factors" of the imperfections; the 
coefficients E and F, 
gradient dispersion 

respectively amplifyin;ad:~~ 
and the apparent 

displacement of the sextupoles have been estimated for 
this simple storage ring model; doing so, we assume 
that the B-beating and the resulting optics asymmetry 
are tne most significant machine imperfections. 

Let us distinguish the contribution of the cells 
frorr that of the low-6 insertions : 

I, I' ,( 4 h,,. l'--- I'. /I t Ipvs~ i l',.!,/,pJ, 

Assuming the scaling laws for electron storage 
rings described in Ref. 8, and using the thin lens 
formalism, one finds [7] : 

I’,,,, 
I 

=: S,/,.,,( ,i’ I? = L’5oonlr,,, 

I! betatron phase advance per cell, (l/$*1 chromatic 
aberration of an insertion, and 

I 
ff?,,, 

, , ,I -= /l/l) ,\ &? 1 
( 

I ? I .) I 
I!:% y J)i>,<, i i;l'(; ,E 

The dependance of Fins/cell on ener9y does not lend 
itself to a simple law and carries an intermediate 
dependance on energy. 

With the exception of Ecell, which is small 
compared to Eins, the amplification of the errors 
decreases with the design energy/size; this is mainly 
because the effect of the low-0 insertions is dominant 
and that their number and characteristics are fairly 
constant; their chromatic correction is spread on a 
number of correctors which is larger for larger 
machines. 

As an illustration, the E and F amplification 
factors were calculated for PEP [9] and LEP : 

Table 3 - PEP and LEF imperfection amplification 

fiq 

Similar results are obtained for the spurious vertical 
dispersion. 

4. Estimates of luminosity losses 

From the range of phenomena which could decrease 
the luminosity, we have looked into the following 
ones : 

4.1 The emittance growth 

The combined effect of the betatron coupling and 
of the residual vertical dispersion invariant gives 
rise to an emittance ratio of 0.6% [l], well below the 
optimum ratio of 4%. 

4.2 The beam size at the interaction point 

The typical B-beating causes a luminosity loss of 
about 5% whilst the tyoical spurious dispersion calJses 
a loss of 2%. 

The @ asymmetry either side of the interaction 
point does not contribute to the luminosity loss but 
slightly reduces the aperture in the strong insertion 
quadrupoles (- 1%). 

4.3 Synchrobetatron resonances excited in the RF 
cavities 

A simulation of synchrotro-betatron resonances 
excited by the dispersion in an RF cavity was carried 
out using the simulation program [lo]; the resulting 
beam blow-up for the standard LEP tunes and for the rms 
value of the dispersion was found to decrease the 
luminosity by 8%; this result is somewhat pessimistic 
if one considers the spreading of many RF cavities over 
several oscillations of the dispersion. 

4.4 The perturbed beam-bean effect 

In addition to an increased beam size, a residual 
spurious dispersion at the interaction points excites 
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beam-beam synchrotron resonances, causing blow-up and 
loss of luminosity. Use of the above-mentioned 
simulation program with the calculated imperfections 
yields a 15% luminosity loss. 

Differing B values and non-symmetrical phase 
advances between interaction points are known to 
produce luminosity losses [ll]. From [lo] and the 
calculated imperfections, a luminosity loss of 20% can 
be predicted. 

Finally the systematic phase advance asymmetries 
introduced by the discontinuous replacement of radiated 
energy were checked to only produce a luminosity loss 
of 3%. 

4.5 Overall luminosity loss 

To summarize,the loss due to the imperfections of 
the real machine may reach about 50% ; although it is 
in principle possible to reduce the emittance ratio, a 
direct correction of the optics imperfections is safer 
and better for background minimization. 

5. Correction schemes 

The closed orbit deviations being the most 
important source of optics imperfections, its efficient 
measurement and correction is a prerequisite to a 
sensible attempt to correct the lattice functions; this 
is particularly true for the strong low-e quadrupoles 
where a significant gain may be obtained by centering 
the orbit to 0.3 mm. 

5.1 Beta-beating 

Its correction is essentially required in the 
insertions; a rematching of the insertions based on 
measurements is possible, given the fact that the 
insertion quadrupoles are independantly powered; 
alternatively, symmetric and antisymmetric B-bumps 
using two to four pairs of quadrupoles may be used; in 
both cases the resolution is better than 0.01 in 
de/B and a. 

5.2 Phase advance asymmetries 

For the present LEP configuration with four 
experimental insertions, it is convenient to retune the 
four non experimental insertions, which would give a 
resolution better than 0.001 in db/2n: if LEP would be 
operated with more experi'mental insertions, 
antisymmetric 6 bumps would allow the fine tuning of 
the ohase advances. 

5.3 Average dispersion 

An elegant approach based on orbit correction was 
developped for PEP [12]; the difficulty for LEP is 
related to the resolution of the dispersion 
measurement. Two methods with less degrees of freedom 
could be used, based on the optimization of the 
luminosity or beam sizes : 

antisymmetric closed orbit bumps in the non- 
experimental insertions (very effective vertically), 
2*n closed orbit bumps in the lattice; given the LEP 
achromatic structure, they only produce two 
independant dispersion bumps per octant; a 1 mm 
closed orbit bump produces a 10 mm dispersion 
oscillation. 

5.4 Dispersion in the insertion 

amplitude of 9 mm, which may be distributed over 
several in-phase bumps to reduce the amplitude. 

5.5 Betatron coupling 

Unless the tunes are closer to a coupling 
resonances, there is no need to correct the natural 
betatron coupling. If the need would arise, the 
solenoid compensation scheme, which is foreseen in the 
four LEP experimental insertions [4] is sufficiently 
flexible to allow the compensation of the overall 
betatron coupling (emittance control) and the first 
order decoupling of the transfer between insertion 
points. 

6. Conclusion 

The analytical calculation of the LEP optics 
imperfections confirms the simulation results; the 
reasons for their relatively low values as compared to 
smaller machines is related to the fact that the 
chromatic aberration of the low-a insertions and the 
distribution of chromatic correction are more important 
than the machine size. The resulting luminosity loss 
prediction is not large though significant; the optics 
of LEP is sufficiently flexible to allow the correction 
of the lattice functions without modifications. 
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Use of the dispersion suppressor requires 
excessive quadrupole strengths; the residual dispersion 
in tb,e insertion is best corrected by 2 pairs of 
dispersion bumps as mentionned above; the correction of 
the typical spurious dispersion requires a bump 
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