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Summary 

A future ring with a low emittance and large 
circumference, specifically dedicated to a synchrotron 
light source, will have a large chromaticity, so that 
it is important to employ a sophisticated sextupole 
correction as well as the design of linear lattice to 
obtain the stable beam. We here tried a method of 
sextupole correction for a lattice with a large 
chromaticitg and small dispersion function. In such a 
lattice the sextupole magnets are obliged to become 
large in strength to compensate the chromaticity. 
Then the nonlinear effects of the sextupole magnets 
will become more serious than their chromatic effects. 
Furthermore, a ring with strong quadrupole magnets to 
get a very small emittance and with strong sextupole 
magnets to compensate the generated chromaticity will 
be very sensitive to their magnetic errors. We here 
also present simple formulae to evaluate the effects 
on the beam parameters. The details will appear in a 
KEK Reuort. 

I. A Method of Sextupole Correction 

There are various methods of the chromaticity 
correction, specifically aiming to correct large 
chromaticities in colliding rings1'2'3. The method 
described here would be a simpler one than those like 
the program EKHARM which requires many terms to he 
specified. The method consists of minimizing (i) the 
amplitude-dependent tune shifts, identical to the 
original EKHARM (only the second-order effects in this 
method), (ii) the first-order chromatic effects (a 
variety of the W-method), and (iii) all of the first- 
order resonance terms (the first-order geometric 
effects). This method has been implemented on the 
EKHARM. It is noted that the original EKHARM has 
already included the minimization of the first-order 
coupling resonance terms. However, the EKHARM did not 
work well for our cases, because the higher order 
effects as well as the one-dimensional resonances that 
are not minimized in the program become very large. 

The chromatic terms (a W-method) 
The first-order AB/B with respect to Ap/p is 

given by, 

ABIB = Re 

expZiv(n-$(t)) dt e 2ie (s) (1) 
The integral part in the right hand side of Eq.(Z) can 
be considered as the slowly varying amplitude, W(s), 
and this W may be taken as the term to be minimized. 
The following terms were used in the minimization 
procedure; for an asymmetric lattice, both the real 
and imaginary parts of, 

ox = 7 i*;n” 
LS x 4 [(K-K’n)Cxji exp 2ivx(n-Qli) , (2) 

and for a symmetric lattice, W 's at s=O and at the 
symmetric point, since the W xls real. The similar 
terms with respect to y areX also included in the 
minimization procedure. 

The first-order geometric terms 

The most of the notations used hera would be 
understood as usual meanings. The two-dimensional 
Hamiltonian H with Hl as its perturbation is generally 
eiven by4, 

H($l, 11, 42, If, 0) = v111+v212fRH1 , (3) 

where H = cv x"y". 
Inlthe f%st-order perturbation, we may transform 

the Hamiltonian using the generating function G, 

j+ke+m 
n " 

G = ‘+1J1+@2J2+CWjkem ($,,@,,WJ, ‘ J2 L t (4) 

and from this, we have, 

ll = 

'4, = Ol+'-F Wjkem Jl 
F-1 Jfp, 

and the similar ones for I 2' $2; 
Therefore we would 

expect that if all W. are sma 1, then the perturba- 
tion must be small. 'Hz w jk!?.m js written as, 

W. ,kLmm(~142'e) = 
i j+kc k &tmc m 

2(jfk+P-+m) /2 

0+2n j+k Hm 
1 

Zsin(((j-k)vl+(e-m)v2)n] B Bl 2E*2 v. J+k,il+m 

.exp i((j-k)(ul-nv,)+(l-m)(n2-sv2)) ds 

vexp i[j-k)(+,-ov,)+(z-m)($2-Bv2)]. (6) 

The integral part would be considered as the slowly 
varying amplitude, W. 
H1=B"(x3-3xy2)/6Bp, 

For the sextupole Hamiltonian 
the independent W's become at s=O, 

w3000m= Ex J c 3/2 

0 
K'exp 3i(uX-~vx) ds/12*23'2sin3nvx , 

w2100(o)= ex J ' 312 3/2 sinnv 
0 

x ' 

L 
Wlo20(0)=- E J 

c l/2 

OX 
ByK'expb(ux- rrvx)+2i(py-nvy) ds 

1 

14~2~'~ sinr(vx+2vy) , 

/4*23r2 sinn(vx-2vy) , 

(7) 

3 
ds 

“lo11(o)=- R J c l/2 

OX 
eyK'exp;i(~x-nus)jds/Z.23'2sinnvx . 

As in the cast of the chromatic terms, we can take the 
following terms in the minimization procedure; for 
an asymmetric lattice, both the real and imaginary 

CH23X7-VIX7i(HWN)-l310 $1.(K) 16 1EF.h 1310 

© 1987 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1987



parts of the Q(O), and for a symmetric lattice, W's at 
s=O and at the symmetric point. 

When the lattice consists of N superperiods, 
both the chromatic and the first-orderSresonance terms 
can be expressed by the integration in a superperiod. 

II. Effects of Magnetic Errors 

We sometimes need the order estimate of the 

effects which would be useful to get an insight into 
the nature of the effects5. 

The r.m.s. of the amplitude of the C.O.D. 
The r.m.s. value of the amplitude of the C.O.D., 

F,P is well-known, 

<fc2/R> = 
LsiL pi$~ ' (8) 

where the errors J, (= (-) 
to be uncorrelated'each c%%eL 

) in magnets are assumed 

The r.m.s. of the C.O.D. 
Since we use a method of approximation in the 

following, we first present a simple expression to 
estimate the r.m.s. of the y in order to illustrate 
the method. Defining nc = yc'jJ8, we then have, 

+m 3-f 
nc(0)= C &e fn$ 

, (9) 
*=4x 

wh re 
7 

f is the fourier component of f/S) and f(S) = 
83 2ABl%3. The f($ )A+, is given by 8' *ei/u. For the 
r.m.s. value of <f f >, we have, n -n 

<f f n -n' = ~<(f($$A$i)2>/4x2 . (10) 
i 

Now we assume that <f f >=O for nm. This assumption 
may be called "white n"orge approximation". Using this 
approximation, we have from the Appendix, 

irlc(S)2' = V2I*(V)~B q 2>/4l? , 
ii i 

(11) 

For v>>l, Eq. (11) becomes, 

<Tp* = <yc2m= <yc ^ 2Ji3>/2 . (12) 

Vertical dispersion,n , and the distortion of n 
The n due to the errors in magnets wouTd be 

mainly genJr;ated by the vertical C.O.D. in quads and 
sextupoles, and it may be written as, 

q(6) = ny/JBy = Re -?-- 
I 

r++2;(S)e-i"Sdc eidn+o) (13) 
Zsinnv $ J 1 

where g(O) = -8'(K-K'n )n (0) . 
If we consider the integra'i part as the slowly varying 
amplitude, ?I('$), then using the "white noise 
approximation", we have, 

Gi($j2> = <Ay2Jey> = &ClB 
i yi 

y*) 

I 1 

(14) 
. ~~~J,1212(v,e)+lJo/21j(V) , 

I 

C 
where JL=-oY 

5 (~-~lnx)e-~"(~)ds . 

In the same way, we can get the expression for the 
distortion of the horizontal dispersion, An . An 
approximate expression for (14) is given by, X 

41($)2> = 1 -+A + $y;;'J + 
I P.t08T p, 

(2”!&’ 1q2 

+ ,;:5;"(1 - $sin'nv) 
1 

<9c2J!3> , (15) 

where .I 0 ' = 16rr2c2 with 5 being the chromaticity. 

Tune shift, stopband, and AB/B 
The tune shift Av, stopband Sv, and AB/B due to 

the gradient errors in quads are given by, 

<AV2, = &~(K~CB):<(AKJK)~> , ~6~2, = ~<Av~> , 

<(A&)*> = 4si~'2nv~(K~Q8):<(AKfK)2> = si~;;xv<Av4:6: 

In a low-emittance ring and/or a ring with a large 
chromaticity, the horizontal C.O.D. at sextupole 
magnets will have much larger effects than the errors 
in quads. When the lattice has N superperiods (s.p.), 
we may use the following formulae; 

+ ncotnv/N cosv$(s,t) + N$(s.t)sinv$(s,t) , 
J 

+ cos(v-n)$(s,t) 
sinn(v-n)/N + T2 (sin2n(u+n) /N 

_ com(v+n) JN cos~vh~~~s tj , 

cosa(v-n) JN 
+ sin2n(v-n)lN cos(v-n)$(slt)l (17) 

+ NnrL(s t) (sin(v+n)*(s,t) + 
sinrr(v+n)/N 

where $(s,t)=$(s)-$(t)-n/N and the n is an integer 
close to 2~. 

<(AB/;B)'> = ~rR,<(ABrfB~)2>~I'2(Y1 L) /KL(' > (18) 
vi 

where Kt = 

i 

JK'8 3'2e-i"x ds for x 
x 

-,K'~x1J2Qe-i"'y ds 
1 

for y . 

III. Numerical Examples6 

We applied the method of the sextupole correction 
described in Sec. I to the preliminary designs of 8 % 
10 GeV storage rings with very low emittances about 2 
nm rad. The principal parameters of one of the rings 
are given in Table I, and its lattice is shown in 
Fig. 1. An example of the dynamic aperture is also 
shown in Fig. 2. Assuming the errors in Table II (a), 
the effects of the magnetic errors on the beam 
parameters were estimated by the formulae in Sec. II, 
and their numerical values are given in Table II (b). 
In the table , it is assumed that the formulae are 
still applicable to the corrected C.O.D. As seen in 
Table II, the sextupole correction is important to 
reduce the effects of the magnetic errors, because (i) 
one of the chromatic effects, AS/8 with respect to 
AP/P, is related to JL, 

(A~JB),,, 2r I.J~/(~v-L) 1 , 

with L an integer close to 2v, and (ii) we also have 
an inequality from (18), 
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+(I$)*> 2 s:$?,(l - $in2rv) <9,*/@> . 

In a ring with a very low emittance, the C.O.D. 
correction is also important to reduce the serious 
effects of the magnetic errors and to obtain the 

stable beam. Furthermore, we would need to correct 
the 7 

Y 
and Anx, and probably the AS/B. 

Table I Principal parameters of a design example 

Energy 8/10 GeV Circumference 1244 m 
Emittance 1.50/2.35 (nm rad) Superperiod 20 
v 54.2 21.2 

5: -164 -47 
a 1.5 x 10-4 

Fig. 1 (a) Half a superperiod. 
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Fig. 1 (b) Sextupole magnets in a superperiod. 

Fig. 2 Dynamic aperture. 
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Appendix A. 

We give here a few summation formulae, 

(A-1) 

12(a,ll) (@O) 
= ncotna (a + 4aJ:;'!t)y + (2~i:;~~~) (A-2) 

+ n2 
2 G-2-+ ,l sin Ira 4a 8 l 4aL (2a-a)' + tL(2a-1) 2) 

13(a) = r n,4(aL-n’)i(a-*)r 
= Acotna + .2 n3cosrra 

4a 4a4sinLna + 4ajsinjna 

+ 4azs;:bna(l - =$=I 
(A-3) 

I,'(a,.t) 7 1 = 
n=4(a'-nL)L(*a-E-*)T 

= acot;a(- 4aj;zep)i + 5a-R 4aj(3a-e) 3-1 

+ 
nz 

1 4aLsin 2 + 718 I (a-t) 2 41 (3a-&) 

f 4n(2a-11) n2 I 
(3a-t)j(a-2)3 'Ot2va + (a-9.)2(3a-i)' sin'2na ' 

For a>>l, these summations are reduced to much simpler 
ones. 
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