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Abstract 

In a coupled lattice excitation of either one of 
the two transverse normal modes will generally excite 
both horizontal and vertical motion at an observation 
point. A measurement of the relative phase and 
amplitude of the two components permits a partial 
reconstruction of the off-diagonal elements of the 
full turn transfer matrix. At each of the nearly 100 
beam position detectors in CESR the coupled transfer 
matrices are measured. A fit of plausible sources of 
coupling to the data can improve our understanding of 
lattice errors and permit an optimization of the 
rotated quad, solenoid compensation scheme. 

Introduction 

In an electron storage ring there is typically 
some coupling of motion between horizontal and 
vertical planes. Sources of the linear coupling may be 
rotated or skew quadrupoles or solenoidal fields. 
Coupling may exist due to misalignments of normal 
quadrupoles or as part of a compensation for the 
effects of an experimental solenoid. A consequence of 
global coupling is a shifting of the tunes of the 
normal modes and such a shift can be measured near the 
difference resonance. Local coupling is somewhat more 
difficult to diagnose but nevertheless may have 
profound impact on machine luminosity. At the 
interaction point which is imbedded in the 
longitudinal magnetic field of a solenoid a 
straightforward application of linear lattice theory 
yields a configuration of compensating skew 
quadrypoles that restores the ribbonlike aspect of the 
beams . But errors will enlarge the vertical size of 
the beam and degrade luminosity. The global effects 
are easily identified and eliminated. Details of the 
evolution of the beam cross section within the 
insertion region are accessible by the technique 
described below. 

Normal Mode Decomposition 

A full turn 4x4 coupled transfer rnatfSi,% can be 
decomposed into normal modes as follows: 

T zz m-l (1) 
where 

” = k 3 
A= I 

cos2ruA+aAsin2rvA PAsin2rv 

(2) 

(3) 
i- TAsin2rv cos2rvA-OAsin2rUA.J 

and similarly for B. 
V = ['Ii+ ,F] and T~+IcI=~. (4) 

T, “, and V are 4x4 matrices. A,B and C are 2x2. I is 
the 2x2 identity matrix. The laboratory phase space 
coordinates X are related to the normal mode 
coordinates W by X = VW where W = (w,w’,v,v) 

Given an initial vector WC,.the phase sp%e 
coordinates after N tuGns 
the lab frame XN = V U WC. 

will be IN = U W. and in 
(5) 

Relative Phase and Amplitude 

Consider the motion in the x-y coordinate system 
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as a consequence of excitation of the kw,w') or the A 
mode. After some number of turns W 
so that the only non-zero part of k- 

-U W. =(w,,O,O,O), 
he A mode vector is 

the wN component. Now propagate the vector WN through 
some phase advance # and find the Y and y 
displacements using q5) and (3). 

‘x (I,) 

I 

rwN(cos#A+aAsin#A) 

x’ (#A) 71 C 1 I, 
-wN7ASin#4 

Y(d.1 = 0 and 
-c+ 71 

0 

x($,) ='-~~(cos)~ + aAsin#A) and 

~(4~)" -C22wN(cos#A+aAsin#A)-C12wN7Asin$A. 

(6a) 

(6b) 

In general the maximum excursions of the horizontal 
(x) and vertical (y) motion will occur for different 
values of #A=2mUA. 

The phase $Ax at which x is an extremum is given 
by: 

$i = tan -1 aA . 

Similarly y is an extremum when: 
Ual 

#i = tan-1 cl2 
@A+ r7A)' 

22 
(7b) 

Substitution of the equations (7) into (6) yields 
the ratio of amplitudes: 

Cl2 2 Ii2 

[I Y =c22 i I ' + ('A+7A @ 

‘A 7 l+a 2 
A 

The difference of equations (7b) and (7a) gives the 
phase difference modulo z. 

A# A = #X- $X =tan -l Lq-5z-J (9) 

where a=- k 
c22' 

Excitation of the orthogonal mode so that w=w'=O and 
v,v'#O yields: 

X 11 c11 
?A= 7 (10) 

(11) 

where b= C-!? 
(31' 

Thin Skew Quad 

As an example consider the introduction of a thin 
skew quad into an otherwise decoupled lattice. The 
full turn transfer matrix of the unperturbed machine 
is 

T= 'b4; [ 1 where M = Ml1 Ml2 I 1 B21 B22 
(and similarly for N). 

The transfer matrix for the thin skew auad is 

and S = 0 0 [ 1 l/f 0 . 
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f is the focal length of the thin element. 

Then T' = SkT = [f":] = [i i] . (13) 

Phase Difference 
^-The phase difference is determined according to 
(9) by the ra$io a= -C12/C22. C can be written 

From ~l~)-w~~hat ' 
(14) 

. 

(m++n) = (SM)++ SN = 1 52 O 

[ p Nll%l N12 * I 
(15) 

(Note that the elements of C are linear in the coupler 
itrength.) Then 

-c,, 0 c12 O 
a= -===Oand h= -c-=~=O. 

C22 12 11 12 
At the thin element A$A = A#B = 0 or z. 

Relative Amplitude 
Equation (8) expresses relative amplitudes as 

11 Y = 
(m' +n) 22 

' A tr(A-B)T2 
which after some manipulation becomes 

(1’3) 

2b+ + 422 
(tr(A-B)2+ 4lm++nl) 1'2+tr (M-N) 1 (17) 

The matrix elements can be written in terms of twiss 
parameters as: 

tr(M-N) = 2(cos2rv 
X 

- cos2rvv) (18) a n 

Im++ nl = $- N12M12= 9 - sin2rVxsin2rv 
Y (19) 

(m' + -1 n)22= T N12 = 

For a weak skew quad far from the difference 
resonance. 

(20) 

i.e., (21cos2rvx-cos2rvyl >> usin 2rU sin2ru ), 
f2 X Y 

II Y + G sin 2rU 

XA 
(21) 

2(cos2xux-cos2ruy) 

For a strong skew quad near-the resonance ,- _ ,- 

(g, + yyggy + kJiZ (22) 

Cl2 _ -PI, 
- c2- GqzAi 

-c22 
7 

= f 11 A 
(cosA#A-aAsinA#A). 

is the ratio of vertical to horizontal 
udes of the A mode. The A mode reduces to the 

horizontal mode as the coupling vanishes. If the 
coupling is weak then ICI <<l and so 7-l. (That 7-t is 
invariably the case in any plausible CESR lattice. ) 
Then 

C22 - -(y/x)A(CoSA#A-QASid#A) (23) 

and C 12 - (y/x)ApASid#A- (24) 

Similarly equations (10) and (11) are rearranged to 
give 

cl1 - (x/Y) B (~osA~B-@BSi~~B) (25) 

and C 12 - (x/y)#BSid#B- (26) 

Note the redundancy in the measurement of C12. Thus 
three of the four elements of the C-matrix are 
extracted directly from the data. 

Finally the C-matrix is normalized to remove the 
gross dependepce on the twiss parameters Q and p 
according to : 

I 
4-j O Cl1 c12 ox O 

1 

sg= uy 

j-s OY- _ 
C21 c22 ;I Gx ' 

Y 

(27) 

CESR IR 

In CESR in the vicinity of the south interaction 
region there is considerable local coupling due to the 
rotated IR quad compensation for the 1 Tesla 
experimental solenoid. The relative phase A# 

I 
is shown 

in Figure 1 as computed for the theoretical attice 
including rotated quads and solenoid strength. (The 
fina& focus vertical and horieontal quads are rotated 
-2.5 and -1.5 respectively about their longitudinal 
axis. Weaker skew quad? gomplete the compensation some 
distance into the arcs ' . 

,,D,n’-r)o: r,omzo, 

(It is important to keep in mind that the vertical and f 
horizontal ,9's are ill defined if the lattice is " 40 D 
severely distorted due to strong coupling.) 

the relatyve phase and amplitude of n&ma1 mode 
oscillations. A magnetic shaker excites one or the 
other of the normal modes. With the aid of a spectrum 
analyzer the transfer function between shaker drive 
signal and beam detector signal is measured. The 
relative phase at which maximum vertical and 
horizontal displacements occur, and the ratio of the 
maximum displacements are extracted from the transfer 
function. In CESR a measurement at each of the 96 beam 
position detectors can be completed in about an hour. 
Repeatability of each measurement is better than 5%. 

Measurement i 4 
Beam nosition detectors are emoloved to measure ' 
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Fig. la. Relative 
distance (meters) 
point. 

mtrrfa P.s+ion iMICW,l 

phase A)A as a function of 
from the south interaction 

Fig. lb. Relative 
distance (meters) 
point. 

phase A#B as a function of 
from the south interaction Parameterization of the Data 

Convenient parameters for comparison of data with 
theory are the elements of the C-matrix which we found 
to depend linearly on coupling strengths. (See 
equation 15.) (The linearity of C in coupler strength 
is not peculiar to the skew quad perturbation but 
persists for an arbitrary (symplectic) thin coupler.) 
We invert and combine equations (8) and (0) to yield: 

Thin Skew Quad Data 

A skew quad was employed to generate a known 
perturbation in CESR. A skew quad located far from the 
interaction region was chosen to avoid confusion with 
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the solenoid and its compensation. Comparisons of 
theoretical and measured A)A and A$ 
Figure 2. Recall that the normalize ! Kallt?e~Znent 

can be measured for excitations of either of the 
t6h2normal modes. The independent measurements are 
indicated in Figure 3 along with the theoretical 
prediction. The background in S 
coupling errors is subtracted. % ~~~sE~t~X~~rof the 
two measurements and the correspondence with the 
prediction are encouraging. 

Fig. 2. Relative phase A#A measured (-) and 
computed (---) at each beam detector. The skew 
quad perturbation is located near detector 29. NO 

background subtraction. 

I.l*lal-oc‘ 
,/#I III, 

Fig 4. Computed S at each beam detector due to 
an error of - lmrg!z the angle of the southeast 
REC IR quad located near detectors 1 and 96. 

permanent magnet (REC) IR quads, and misalignments of 
arc quads or sextupoles. 

Fits to simulated data yield good results. In 
particular, if the relative phases and amplitudes are 
constrained, the parameters of the fit (coupler 
strengths) assume appropriate values on iteration. In 
so far as the measurement at each of the detectors has 
an error of less than 5%, we can anticipate an ability 
to diagnose coupling errors at a level of -(l/JN)5% - 
0.5%. 
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