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Adiabatic invariance theory provides a good 
description of trajectories in a traveling wave when the 
particle orbit frequency 0 greatly exceeds the modulation 
frequency E of the wave amplitude. However, the adiabatic 
invariant is destroyed by encounters with the separatrix, 
where o goes to zero. Recent advances’ in the description 
of this separatrix crossing process indicate that it is 
diffusive in energy with a characteristic diffusion rate of 
s* per crossing. This implies a diffusion time that scales 

as l/e3. Numerical results which verify this scaling with 
E are presented. 

IC Invanam 

A particle under the influence of a Hamiltonian 
H(q,p,st) with slow time dependence has an adiabatic 
invariant J(q,H,st) to all orders* in the slowness 
parameter s : 

J=I+sJ, +E*J*+... , (1) 

where the zeroth order term is the phase space action 
I (H,st). The action is directly proportional to the area 
enclosed by a phase space contour of constant H at a 
particular instant in time. In practice, the action is well 
conserved when the particle is far from the separatrix and 
o >> E. The separatrix is the phase space contour of 

constant energy Hsx, which separates bound motion from 

unbound motion. Because the orbit frequency o goes to 
zero on the separatrix, the action does not remain constant 
during a separatrix crossing. 

Modulated Wave 

The problem considered here is that of a charged 
particle under the influence of a potential wave with 
constant velocity and slowly modulated amplitude A(st). 
In the reference frame of the wave, the dimensionless 
Hamiltonian is 

H(q,p,et) = p*/* + A,[l-A, cos(et)] cos(q) (2) 

trapped particles, the orbit frequency is 
so the action is well conserved when 

E <.z A’ ‘*. Because particles near the separatrix contour, 
which is given by HsX(st) = A(Et) , are forced to cross it 

repeatedly as it oscillates in phase space, there exists no 
invariant of the motion. A recent analysis’ of this 
separatrix crossing process shows that the action is 
changed by a discrete amount of order E with each 
crossing. If it is further assumed that successive 
crossings are uncorrelated, separatrix crossing particles 
will diffuse through phase space with a diffusion constant 
D - s3. This implies that the mean square dispersion in 

the energy of an ensemble of such particles has the form 

8E2(t) = SE,,,* . (1 - exp(-t/t)) , (3) 

with a diffusion time given by z - ~~~ . This result 

contradicts an alternative suggestion by Menyuk3 that the 
diffusion decay time should scale as ss3’* . 

Numerical experiments have been performed in order to 
test the proposed scaling law, which neglects correlations 
between successive separatrix crossings, and to determine 
the greatest modulation frequency E for which the law 
remains valid. The numerical code uses parameters A, = 2 

and A, = 5, so A1’2 = 1. The Hamiltonian equations of 

motion are 

ci=P (44 

p = (2-cos(et)) . sin(q). (4b) 

The code integrates these equations over many modulation 
periods *TI/E, using an ensemble of 1000 particles each 
with initial energy Ho = 1.81. Because the separatrix 

energy HsX(st) oscillates between the values of 1 and 3, 

the ensemble of particles is forced to cross the separatrix 
twice during each modulation period. The mean square 
energy dispersion &E*(t) of the resulting orbits is 
calculated after each modulation period until it saturates 
at the maximum value gEmax*. Using Eq. (3), one can write 

Qn (SEmax* - &E*(t)) = Pn(6Emax2) - t/z (5) 
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so a plot of the above function vs time has a slope of -l/z, 
which allows one to measure the value of t for any E used. 

Results 

Experiments of the type described above have been 
performed for a range of modulation frequencies 
.04 2 E 5 .7 , using a different ensemble of initial particles 

for runs which used the same E. If t - sT3, a logarithmic 
plot of t vs E should be a straight line with slope -3. 
Fig. 1 shows such a plot, which convincingly verifies the 
scaling law for s < .2. 
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Fig. 1. Diffusion time is plotted against modulation 
frequency. The points are numerical data. The line has a 
slope of -3. 

Conclusions 

There exists no invariant of the motion for separatrix 
crossing particles. In the limit that the crossing 
frequency E is small compared to the bounce frequency o 
of a deeply trapped particle, the crossing process is 
diffusive in energy. The mean square energy dispersion of 
an ensemble with uniform initial energy will saturate 
exponentially, with decay time z - E -3, to some maximum 

value. Numerical results confirm this behavior for 
E/W < .2. 
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