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Abstract 

A High Frequency Cavity (HFC) can be a powerful 
tool for the reduction of particle losses during the 
energy passage through the y-transition in proton 
synchrotrons, via bunch dilution. In this paper we 
consider some aspects of bunch dilution. With an 
appropriately chosen frequency of phase modulation, 
the HFC can produce parametric resonance for par- 
ticles near the bunch center. As a result, the pro- 
cess of dilution can be accelerated. 

Introduction 

In order to reduce particle losses at high beam 
intensity, during the energy y-transition of a proton 
synchrotron, an HFC, phase modulated relative to the 
accelerating RF cavities, can be used. Such a method 
was accomplished successfully at the CERN PS ma- 
chine. 

At the Brookhaven AGS machine, a project to 
build an HFC is in progress. It is anticipated that 
this cavity will be able to dilute bunches of 1 eV-s 
initial area to 2 eV-s during the period of 50 ms 
(full bucket area = 2.8 eV-s). 

As shown by Boussard,' the effect of HFC can be 
theoretically treated in the same way as the effect 
of RF noise, which leads to particle diffusion with 
emittance growing linearly with time. 

In this paper we wish to point out the existence 
of and emphasize the role of a parametric resonance 
area near the center of the bunch. That implies that 
the diffusion coefficient is not a constant over all 
the bucket area and, as a consequence, the resonant 
phase modulation frequency of HFC can be chosen so as 
to speed up the diffusion. 

Basic Equations and Parameters 

The longitudinal motion of particles forming a 
stationary bucket is governed by the equations: 

. w 
AE=$VSin$, i=awsAE (1) 

with AI! = E-E,, a = -hn/BiE,, n = l/y: - l/v2; Es, 
w are the energy and revolution frequency of the 
s&chronous particle, whose synchronous phase is os = 
'T; h is the harmonic number, V is a voltage applied 
to the cavity gap. 

For the AGS, we consider the following parame- 
ters: H = 12; Es = E. + Ekin = 938 + 1500 MeV; f, = 
4.1 MHZ; ws = Znf,; V = 100 kV. Equations (1) is 
equivalent to one phase equation 

'0' = to: Sin 0, uz = aw;i2 V/Z? (2) 

*Work performed under the auspices of the U.S. 
Department of Energy. 

For the AGS one can find, based on the above parame- 
ters, a synchrotron frequency w,=2nf,, f -1.2 kHz. 
To describe the effect of a HFC on partic e motion, P 
we should add to the right side of Equation (2) an 
additional term, to give 

',$' = $ (Sin $ + P Sin NQ) (3) 

with P = v,/v, N = Fh/Fo, where Vh and fh are the 
voltage and frequency applied to HFC; V and f, are 
the voltage and frequency of the main RF system. To 
avoid coupled bunch instabilities, N = 22+1/3 was 
chosen for the AGS,2 P = 0.3. 

Equation (3) can be derived from the Hamiltoni- 
an 

H=&+U, W=dE 
wS’ 

u= 2 (Cos $ +$ Cos N$). (4) 

This is the case of "silent" HFC (no phase modula- 
tion) when the potential U does not depend on time 
explicitly. The important feature is that U possess 
two local minima in the vicinity of $ = r: 

dU 
a6 P+al+r = 0, $n = 2.98; & = 3.23. 

We will need $a, 0, later to calculate resonance 
frequencies. 

In order to include the effect of phase modula- 
tion of HFC, we can rewrite the phase Equation (3), 
including time dependence in the term responsible for 
HFC: 

'(I' = u; {Sin $ 

6=a 

where we choose the 
simple form with fixed 

+ P Sin (N[$ - b(t)])), 

Sin 2n f, t, (5) 

modulation function s(t) in 
amplitude o = n/N = 8.06". 

We now discuss how to select the modulation 
frequency fm to accelerate the dilution. First, we 
linearize Equation (5). It is convenient to start 
with the substitution S = Q - 6 and urn = 2nfm 

. . 
e - CIJ~ [Sin (6+6) + p Sin NB] = tit 6. 

Then we make a linear expansion with respect to snail 
6 (a = 0.14), giving: 

. . 
e - fdz (Sin 8 + 6 Cos 0 + p Sin NB) = 0Ii 6. (6) 

Now, if 9, is a solution of Equation (3), then we 
introduce a new variable $ by setting 6 = 0, + $ and 
we then linearize Equation (6) with respect to J1: 

'+' + u$ [-(Cos $. + PN Cos NOo) + Sin 0, * 6(t)]+ = 

= (w ; + $ cos $,) 6(t), (7) 
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. . 
or, J, + $ v2(l + p cos qt) $ = b a(t), (8) 

w2 = -Cos 9, - pN Cos N$,, b = $ + U; Cos $',, 

p = Sin $. /J. (9) 

We note, if $. is a stable fixed point (4, = $a. or $. 
= 0,) for Hamiltonian H, then 0, as well as v and p 
are constants, v2 > 0. 

Equation (8) with b = 0, would be a Mathieu 

equation. (The equation '$' + w*(l + p Cos qt)l) = 0 
is well know" to be the parametric resonance equa- 
tion.3) The solution of Equation (8) IS J, = 61 + $2, 
where $1 is the general solution of Equation (8) at b 
= 0 and JI2 is some particular solution with b f 0. 
In other words, $1 is the Mathieu solution which has 
(see Ref. 3) exponential type growth, that is 61 a 
exp (pat), 13 = w. u > 0, 

q = 2w = 2wov = 2Xfm. (10) 

This means, if the modulation frequency f, in Equa- 
tion (5) was to be chosen according to Equation (10) 
with v = v(ao), corresponding to either one of the 
two local minima, $a, Or, then the particles would be 
subject to a parametric resonance in the vicinity of 
these minimal fixed points. Those resonance fre- 
quencies are f, = 6.28 kHz, f, = 6.65 kHz. 

In the next section, the results of computer 
simulations are presented, using different modulation 
frequencies fm applied to the HFC. 

Computer Simulations 

A computer program was developed to solve Equa- 
tion (5) by the usual method of difference approxi- 
mation. All the parameters mentioned above with 
their numerical values were adopted. The main 
parameter to be varied was the modulation frequency 

f = f (t), : << 1. 
d?lutio% speedy 

To see its influence on the 
an average radius R = R(t) in the 

phase space (AE, +) was calculated after each time 
step (turn) according to 

R2(t) = 4 ii1 [ % (AEi)' $1 + cos2 71, (11) 

where n is the number of particles. The radius R, of 
course, is neither the emittance nor the best measure 
of dilution. However, in most cases R can be a good 
and simple indicator of dilution, because R increases 
and decreases along with emittance. 

In the accompanying figures, the evolution of 
R(t) is represented by five curve pieces, usually one 
above the other. Each piece represents R(t) during a 
time interval of 10 ms. Thus, the numbers from 40 to 
49 on the horizontal axis refer to the last decade. 
The following figures show two adjacent buckets. The 
left bucket contains the initial distribution of 
particles (matched hunch), the right one shows the 
final distribution. 

Figure 1 shows dilution at constant modulation 
frequency, f, = 3.5 kHz, which is far from the 
resonance fm = 6.3 kHz. The process is so slow that 
all five pieces of R almost overlap. 

R 
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Fig. 1. Dilution with modulation frequency 
far from resonance. 

More rapid dilution is show" on Figure 2 with 
fm = 6.4 kHz, close to parametric resonance. 

R(t) 
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Fig. 2. Dilution with modulation frequency 
close to resonance. 

In Figure 3 we can see the effect of sweeping 
the modulation frequency. It was chosen to be the 
linear function f,(t) = 3.2 + 0.2 t. All five pieces 
of the R-curve are well separated. The lowest curve 
describes the evolution of R(t) during the first 10 
IUS. The highest one describes the interval from 40 
to 50 ms. The growth rate of R was slow during the 
first 16 ms, when fm changed from 3.2 to 6.3 kHz. 
After that, the dilution was twice as rapid during 
approximately 20 ms and then again slowed. This is 
the result of passing through a resonance area where 
the changing fm covers more particles with resonant 
frequencies. When the modulation frequency is 
higher, then a number of particles leave the bucket 
and are lost, as can be seen in Figure 3. 

To improve the situation, we took a periodic 
linear sawtooth modulator f,(t) = 6.3 + 0.1 [t - 4 
Integer (t/4)]. This is a function with a period of 
4 ms; within each period fm grows linearly from 6.3 
kHz to 6.7 kHz. It covers the resonant area pro- 
ducing fast dilution, without extending to higher 
frequencies which could result in significant parti- 
cle loss (Figure 4). 
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Fig. 3. Dilution with swept modulation frequency 
f,(t) = 3.2 + 0.2 t. 
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Fig. 4. Dilution with sawtooth modulation. 

All the above examples are calculated with 
initially deposited homogeneous bunches. The next 
two figures provide comparison for non-homogeneous 
bunches. 
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Fig. 6. Non-homogeneous bunch diluted by 
sawtooth modulation. 

Conclusion 

Phase modulation of HFC can produce more rapid 
dilution if modulating frequencies cover the area 
near parametric resonance. 
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Fig. 5. Non-homogeneous bunch diluted with 

fm = 6.4 kHz. 
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