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Introduction 

In small storage rings with large acceptances, such as the CERN 
Antiproton Accumulators, the nonlinearities associated with the mo- 
tion of particles at large amplitudes and particles with large mo- 
mentum deviations play a significant role. This paper deals with a 
source of nonlinearity associated with the end-field region of qua- 
drupole magnets. In the short, large aperture quadrupoles typical of 
these storage rings the fringe fields are significant and have a mark- 
ed influence on orbits passing through them at large angles. It is 
found that, in particular, the nonlinear end-fields can account for the 
observed variation in tune and dispersion with momentum deviation, 
previously thought to be due to some unexpected octupole fields in 
the ring. The tune and dispersion variation are critical parameters in 
storage rings incorporating stochastic cooling since they determine 
beam heating rates due to resonance crossing and parasitic heating 
respectively, and much work has been done on the CERN AA ring 
to control these parameters [ 11. 

A rigorous 3.dimensional analysis shows the existence of a 
cubic term in the end-fields of quadrupoles which has an octu- 
pole-like influence on the particle orbits. The azimuthal symmetry of 
this cubic term is 24 like a quadrupole, not 4r$ like a normal octu- 
pole, thus it can be regarded as a pseudo-octupole. By correctly 
modelling this term in a particle tracking program it is possible now 
to make quantitative predictions of the corrections necessary tc 
compensate this apparent octupole component. 

3D Field Analysis 

By taking a generalized multipole expansion of a magnetic field, as 
has been done, for example by Glaser [2], one can see that there are 
nonlinear terms whose coeficients depend on the axial variation of 
the field. The series expansion up to 4th order of the magnetic po- 
tential is: 

From this the transverse field components are found to be: 

True fteld shape 
t 

curd edqe moue1 

B 
/ 

a 

I ~ttrctw magnet!c lenqlh. I,,, -1 

By = Q”x’/lZ + Q”xy’/4 
t 

B 

= fQ,(x’ + 3xy’)llZa’ 

-I- + 

c 

t 

B’ 
aB,lax = 
aB&y = fQO(x’ + yz)/4a’( 

F F 
A r\ 

-G=--=-6 

6 = - k,(2x+ + a$‘)/4 

Figure I: 

a. Variation of the quadrupole strength along the 
axis 
b. Transverse Iield component of the pseudo octu- 
pole 
c. Gradient of the pseudo-octupole 
d. Net focusing strength of pseudo-octupole 

Thus in a quadrupole where the field has a linear gradient Q a third 
order term will arise in the fringe field where the second ddrivative The conventional treatment of quadrupoles uses the so called 
Q” with respect to the longitudinal coordinate is nonzcro. This dif- hard-edge model where the quadrupole gradient makes a step func- 
fers from the third order term introduced by the oclupole coefficient tion or a linear ramp at the magnet ends, implying that Q” is zero. 
Q1 so that it can not be compensated by a normal octupole, as has A more realistic assumption is to assume the fringing has a 
already been pointed out by Wilson [3]. bell-shaped profile, as shown in fig. 1, in which case Q” is nonzero. 
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The simplest shape that can be attributed to the end field, in which 

the second derivative is nonzero, is a quadratic dependence of the 

gradient on z, as has been pointed out by Wtistefeld [4]. Assuming 

further that the gradient falls to zero within one aperture diameter, 
2a, then Q” =fQ,Ja’, where Q” has the same sign as Qc on the in- 

ner part of the fringing field and opposite sign on the outer part. 

The third order terms in the transverse field components re- 
sulting from the fringe field can then be expressed as 

B, = Q”y’ll2 t Q”x’y/4 

= &Q&y’ + 3x’y)/l2a’ 

By= Q”x’/12 + Q”xy’/4 

= fQo(x2 + 3xy2)/12a2 

These pseudo-octupole terms can also be measured in the fringe field 
of the quadrupole and, as an example, measurements on the CERN 
LEAR quadrupoles show that their magnitude is in agreement with 
the simple theory [S]. 

The Effect on the Beam 

The effect of quadrupole end-lields in beam lines has been consid- 
ered by Regenstreif [6] and in linacs by Gluckstern [7]. Using 
their formulae Beck et al [E] have calculated tune shifts in synchro- 
trons resulting from perturbations to the betatron functions. In the 
following analysis it is shown that the effect is far more significant 
when the orbit makes a large angle with the end-field as is the case 
when the slope in the dispersion function, D’, is large. 

The equations above show that the end-field gives the beam 

two kicks in opposite directions, which cancel for paraxial trajecto- 
ries, but which gives a net focusing to trajectories passing through at 

an angle. The field gradient which does the focusing in the end-field 

can be expressed as a function of particle amplitude, 

dBylax = anxjay = *Q~(x' t y1)/4a2 

It is perhaps worth noting that a normal octupole would have here 

instead a term (x’ - y’). For a particle of amplitude x making an 
angle q5 with the axis the net focusing power of the end-field is 

6 = -k,(2x+ + ~$a)/4 

where k,=Q,/Bp of the parent quadrupole. For a family of N 
symmetrically located quadrupoles in a ring (each having two 

end-fields) at a location where the betatron amplitude is a,, the dis- 
persion is D and the slope in the dispersion is D’, the tune will shift 

with momentum according to 

AQ = - Nk$,DD’(Ap/p)‘/4x 

This gives a reasonable estimate in rings with large dispersion, 

but other situations can also arise where the end-field will be signif- 

icant such as mini-beta insertions. In such a case the angle and am- 

plitude of the trajectory must be used explicitly. 
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Figure 2: a. Variation of tune with momentum in the AA ring 
b. Variation of orbit position at a point where the 
first-order dispersion is zero. 
- including the nonlinear effect of fringe 
fields in the quadrupoles, 

- x - x - x - neglecting this effect, 

+ + + + experimentally measured QV, 

* * L * experimentally measured QH, from 
reference [IO]. 
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Figure 3: a. Variation of tune with momentum in the AC 
ring. 
- o - o - o - including the nonlinear effect of fringe 
fields in the quadrupoles, 
- x - x - x - neglecting this effect. 

Results from Particle Tracking 

The effect of the end-fields can be suitably modclled in a particle 
tracking program by inserting thin nonlinear lenses into t’le lattice at 
the ends of each quadrupole. The strength of the nonlinear kick 

given to the particle is proportional to the third order terms in the 

transverse field components of the fringe field given above. As was 

pointed out above, two kicks of opposite sign are present in each 

end-field, so the lattice must include two thin lenses with separation 

a at the ends of each.quadrupole. The MIRKO tracking program 

[9] used for this analysis easily facilitates insertion of these thin 
nonlinear lenses. An important feature of the program, in this con- 
text, is that the lattice geometry is properly calculated at each dif- 
ferent orbit momentum in the ring. 

The tune and dispersion variations with momentum for the 
CERN AA ring are plotted in fig. 2, both for the case where !he 
end-field effect is included in the simulation and where it is neglected. 
Clearly the case where the end-field effect is included is in far better 
agreement with the experimental values, taken from measurements 
made not long after commissioning of the ring [lo]. 

Calculations have also been made for the CERN ACOL ring 
[It J, now approaching completion, and the same behaviour is ap- 
parent. In fig. 3 the tune variations are shown as a function of mo- 

mentum. A quadratic behaviour in tune variation, indicative of oc- 
tupole-like terms, is visible. In addition a small shift in tune and 
closed-orbit position is also noticeable on the central or.bit when 
end-fields are included in the simulation. This occurs in the AC be- 

cause some offset quadrupoles are employed and thus even the cen- 

tral orbit passes through their end-field at an angle. Such an effect is 

not discernible to a machine operator who only adjusts a magnet 

current to establish a particular tune. 

Compensation Measures 

The AA ring has been painstakingly reshimmed during its years of 
operation to achieve the desired flatness in chromaticity as well as 

uniform zero dispersion in the dispersion free sections, as has been 
pointed out in reference [I]. Post shimming of a machine is by 
definition an empirical process so it is necessary 10 find locations in 
the lattice where magnets can be shimmed to alter each parameter 
independently. In the AA this was possible by shimming one family 
of quadrupoles whose spacing in the lattice is a half betatron wav- 
elength, allowing the horizontal tune to be corrected while leaving 
the dispersion largely unaffected. A second family of quadrupoles 

could be shimmed to restore the dispersion to zero at the desired 
momentum values. 

In the new AC ring the tunes lie very close to the l/2 integer 
resonance, which makes control of the tune over the full momentum 

range essential in order to realize the full acceptance of the machine. 
The proximity of the tune to this value is unavoidable because of the 

positioning of the stochastic cooling pick-ups and kickers diametri- 
cally opposite each other in the ring. In order to exercise indepen- 
dent control over the tune and dispersion means again looking for 
lattice locations with a n betatron phase separation, which in this 
instance coincides with a dipole magnet. Unfortunately the disper- 
sion is not very large at this location so the orbit separation of the 

different momenta is not very great. The alternative correction 
procedure of shimming quadrupoles at locations where the disper- 
sion is large means sacrilicing independent control over the tune and 
dispersion, so that two families of shims must be adjusted simulta- 
neously, which is dimcult to do in practice. 
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