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Introduction

The development of compact storage rings which use
superconducting air-coil magnets for the bending
dipoles has made it necessary tc refine the method
of existing linear lattice codes,. To our knowl-
edge, there exists no linear lattice code that
exactly takes into account the strongly non-iscma-
gnetic field shape that is produced by this type of
magnet. A set of programs has been developed at
BESSY which tackle this problem. These codes are
especially ussful for studying the influence of
insertion devices con the lirear particle dyramies,

Reference orbit
In a system with isomagnetic elements, the refer-
ence orbit is a simple sequence of straights and
arcs. In non-isomagnetic fields the reference orbit
has to be calculated by numeric integration. In any
magnetic field with midplane symmetry the magnetic
field vector is perpendicular to this plane for any
point in this plane. Therefore, a charged particle
with initial velocity vector parallel to this plane
will never leave the plane. The exact motion of the
particle is given by the differential equation’
v o

Ty e " o B, (x,y) 5 ¥y = y(x) (1)

with: x,y : cartesian coordinates in the plane
z : cartesian coordinate perpendicular to

the plane

v’ = dysdx, y° = d@
: particle charge

P_ : particle momentum
B, : magnetic induction

y/dx?

Transforming equation (1) to polar coordinates, we
arrive at the differential equation

rfrrt-orr’t e ,

TR T B,(r,¢) ; r = r(¢) (2)
This eguation can easily be transformed to a system
of first order differential equations and then be
integrated in a glven field B, with given boundary
conditions r”(1), r’(2) at the entrance and exit to
the magnetic field,

v .

We have studied two different bending magnets with
this method. A magnet with a bending angle of 180°,
consisting of three banara shaped coils and a
similar magnet of 90° bending angle. The magnetic
midplane is defined by the symmetrical arrangement
of each pair of coils above and below this plane.
The magnetic induction B, in the plane was calcu-
lated by a field code for handling general current
carrying conductors in three dimensions? by evalu-
ating the Biot-Savart-Law. Fig. 1 shows the top
view upon one half of the coil arrangement of the
180° magnet. In the same figure the isomagnetic and
non-isomagnetic orbits are shown, too. Due to the
symmetry of the magnet, the boundary conditions for
the reference orbit have to be set to r’(¢ = 0) =
r’{¢ = 90°) = 0. This orbit represents the ideal
equilibrium orbit for a reference particle with
momentum P .

Field expansion

For calculating the linear particle dynamics we use
the expanded form of a magnetic field with midplane
symmetry, as has been provided by Brown and
Servranckx?®. They express the magnetic induction in
a general right-handed curvilinear coordinate
system (x,y,s) moving with the reference particle.

x : radial coordinate

y : vertical coordinate

S longitudinal coordinate (and length of

reference orbit)

Up to second order this expansion looks like:

P
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(a prime means differentiation with respect to s)

with the following multipolefuncticons (functions of
s!):

e | e .
. =~ A : dipoles
n(s) P By X =y =20 v 10 p
[ o
P) e 3B \ e
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e 338 | e
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e 3B | e
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(s) P 9x- x=y =0 p H

We calculated these multipolefunctions by numerical
differentiation of the field along the normal
direction of the curved reference orbit. Fig. 2 - 6
show these functions for the 180° bending magnet.
The abscissa starts at s = 0 which represents the
symmetry point in the middle of the magnet. For the
dipole and quadrupole functions the corresponding
hard edge model has been indicated as well. As
expected, the true field, which is produced by the
superconducting air-coil arrangement, deviates
drastically from a hard edge model, especially in
the entrance and exit regions of the magnet.
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Linear optics

For the 1linear particle dynamics only the dipole
and quadrupole field functions are needed. A
linear optics program called PECCS has been devel-

Non linear calculation

To take into account the higher order multipole
functions, we used the kick approximation. In this
approximation the abcissa is divided into intervals

oped. This progran oalculatés twiss functions, and the function in that interval is replaced by a
cgzomatlcltles and raglaglqn integrals 1y - Ig in correspondingly adjusted kick of infintesimal
the presence of §tan ard isomagnets and non-iso- length. Between each kick we used the linear trans-
magnets characterized by h(s) and k“(s). In the

orogram the functions h(s) and k®{s) are evaluated
at arbitrary arguments by third order spline ap-
proximations.The characteristic first order trajec-
tories (matrix elements) of the system fCi, Ci',
Sy Si', di, di’ (i = x,y)] are integrated by a
forth order Runge-Kutta algorithm, All integrations
for averages and radiation integrals around the
closed orbit of a circular lattice are evaluated by
a 10-point simpson integration between adjacent
points of spline intervals.The differentiation has
been performed by a seven point differentiation
formula® with a minimal step size of 2 mm. For
comparison we calculated the opties of two differ-

formation matrices calculated by ¢the method de-
scribed in the section above. This method, however,
does not take into account the dynamic nonlinear
parts in the field expansion. The tracking results
can be treated by different post-processors which
present phase space plots, trajectory plots and
Fourier spectra of the betatron motions. As a
demonstration of the nonlinear calculations, we
show in Fig. ¢ the maximal stable emittance for the
lattice A. In this case the vertical tune has been
fixed and the horizontal tune was scanned. In the
presence of only sextupoles the resonances 3Qx = U
and 2Q, + Qx = 4 show up as strong dips. By adding

higher” multipoles the resonances are shifted and

ent lattices. The first lattice (A) uses a race- smeared out.

track-shape orbit with two 180° bending magnets and

two quadrupoles in each straight section, The
second lattice (B) uses four cells with four qua- References
drupoles and one 90° magnet in each cell. We com- TK.G. Steffen, "High Energy Beam Optics",

pared the results with calculations where we re-
placed the non-isomagnetic dipoles by hard edge 2
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Lattice A Lattice B

Circumference: 9,6 m; Circumference: 26,88 m;

# of cells = 2 # of cells = U

Isomagn. non-isom. isomagn. non-isom.
Averages over a cell
<Beta-x> 4.48552 4. 45979 3.01398 3.17849
<Gamma-x> 4.19733 4.10436 1.03884 1.08527
<Disp.-x> 1.0766% 1.07575 t.0u961 1.08146
{Beta-y> 3.42083 3.42220 4.30551 4.941499
<Gamma-y> 3.40911 3.31218 . 704651 1.10856
(sz/BeLa—X> 594826 .562012 .383020 .386725
<Beta-x(D, “+Alpha¥D,/Beta-x)%> 2.19785 2.02235 .105922 9.893614E-02
Jeba~x MAX 13.1309 13.0249 6.03133 6.45286
8eta-x MIN 105977 . 100726 1.13822 1.11946
Beta-y MAX 10.3715 10.1243 5.95513 7.43513
Beta-y MIN L125144 121981 1.71054 .B1U559
Disp-x MAX 3.18625 3.10371 1.87409 1.93081
Disp-x MIN ~-. 479585 -.433279 190845 . 196456
Particle energy FMeV 592. 253 592.250 1435.20 1435.20
Particle rigidity T*m 1.97725 1.97725 4.78905 4.78905
Gamma 1160.00 1160.00 2809.61 2809.61
Revol. time [s] 3.202202E-08  3.202217E-03 8.966209E-08  8.9666208E-08
HMomentum compaction ~-6,705356E-03 1.418914E-02 6.796584E~02  6.737219E-02
Chromaticity-x nat, -3.20651 -3.13560 -2.22212 ~-2.32144
Chromaticity-y nat. -2.60U35 -2.53032 ~1.50728 -2.362712
Tune QX 1.19787 1.20001 2.25002 2.22596
Tune QY 1.29144 1.28600 1.25002 1.620u4
Radiation Integral I1 -6.437111E-02 .136216 1.82692 1.81097
Radiation Integral I2 14,2800 14,8455 5.24975 5.76368
Radiation Integral I3 32,4546 33.6527 4,38630 5.06559
Radiation Integral 14 1.662347E-02 8.290382E-02 1.27539 1.25439
Radiation Integral I5 62.3055 61.2031 .969322 1.26575
Damping time-x s 1.535233E-02  1.483319E-03 1.084096E-03  9.55U4899E-04
Damping time-y s 1.533445E-03  1.475035E~03 8.207221E-04  7.475399E-04
Damping time-z s 7.6627675-04 T.35U640E~04 3.659130E-04 3.370885E-04
Damping partition (D-Sands) 1.164109E-03 5.584426E~03 .242943 .217637
Energy loss per turn [Mev 2.473520E-02  2.571482E-02 .313585 .3hh28y
Energy spread 7.660U96E-04  7.64215UE-0Y 1.062631E-02  1.096053E-03
Emittance-x [ﬂ-m'ra(ﬂ 2.257T109E-05 2.1U42191E-06 7.39306UE-OT 8.508708E-07

Table 1: Lattice Parameters
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Fig. 6: Decapol function d(s)
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