W. -D. Klotz* and R. Maier

Berliner Elektronenspeicherring-Gesellschaft fü Synohrotronstrahlung mbH
(BESSY)
Lentzeallee $100.9-1000$ Ferlin $२\}$

Introduction
The development of compect storage rings which use superconducting air-coil magnets for the bending dipoles has made it necessary to refine the metnod of existing linear lattice codes. To our knowledge, there exists no linear lattice code that exactly takes into account the strongly non-isomagnetic field shape that is produced by this type of magnet. A set of programs has been dovoloped at BESSY which tackle this problem. These codes are especially useful for studying the influence of insertion devices on the lirear particle dyramics.

Beference orbit

In a system with isomagnetic elements, the reference orbit is a simple sequence of straights and arcs. In non-ísomagnetic fields the referonco orbit has to be calculated by numeric integration. In any magnetic field with midplane symmetry the magnetic field vector is perpendicular to this plane for any point in this plane. Therefore, a charged particle with initial velocity vector parallel to this plane will never leave the plane. The exact motion of the partiole is given by the differential equation:

$$
\begin{aligned}
& \frac{y^{\prime \prime}}{\left(1+y^{\prime 2}\right)^{3 / Z}}=\frac{e}{P_{0}} B_{z}(x, y) ; y=y(x) \\
& \text { with: } x, y \text { : cartesian coordirates in the plane } \\
& z \text { : cartesian coordinate perpendicular to } \\
& \text { the plane } \\
& y^{\prime}=\frac{\text { the plane }}{} / d x, y^{\prime}=d^{2} y / d x^{2} \\
& \text { e : particle charge } \\
& P_{o} \text { : particle momentum } \\
& \mathrm{B}_{2}^{0} \text { : magnetic induction }
\end{aligned}
$$

Transforming equation (1) to polar coordinates, we arrive at the differential equation

$$
\begin{equation*}
\frac{r^{2}+r^{2}-r r^{2}}{\left(r^{2}-r^{2}, 37 L^{2}\right.}=\frac{e}{p} B_{z}(r, \phi) ; r=r(\phi) \tag{2}
\end{equation*}
$$

This equation can easily be transformed to a system of first onder differential equations and then be integnated in a given field θ_{z} with given boundary conditions $r^{\prime}(1), r^{\prime}(2)$ at the entranoe and exit to the magnetic field.

We have studied two different bending magnets with this method. A magnet with a bending angle of 180°, consisting of three banana shaped coils and a similar magnet of 90° bending angle. The magnetio midplane is defined by the symmetrical arrangement of each pair of coils above and below this plane. The magnetic induction B_{z} in the plane was caloulated by a field code for handiing general current oarrying conductors in three dimensions ${ }^{2}$ by evaluating the Biot-Savart-Law. Fig. ? shows the top view upon one half of the coll arrangement of the 180° magnet. In the same figure the isomagnetic and non-isomagnetic orbits are shown, too. Due to the symmetry of the magnet, the bounciary conditions for the reference orbit have to be set to $r^{\prime}(\phi=0)=$ $r^{\prime}\left(\phi=90^{\circ}\right)=0$. This orbit represents the ideal equilibrium orbit for a reference particle wibh momentum P_{0}.

Field expansion
For calculating the linear particle dynamics we use the expanded form of a magnetic field with midplane symmetry, as has been provided by Brown and Servranckx ${ }^{3}$. They express the magnetic induction in a general right-handed curvilinear coordinate system (x, y, s) moving with the reference particle. x : radial coordinate
y : vertinnal coordinate
s : longitudinal coordinate (and length of reference orbit)

Up to second order this expansion looks like:
$B_{x}=A_{11} y+A_{12} x y+\ldots=\frac{P_{0}}{e}\left[k^{2} y+m x y+\ldots\right]$
$B_{y}-\Lambda_{10}+A_{11} x+\frac{1}{2!} A_{12} x^{2}+\frac{1}{2!} A_{30} y^{2}+\ldots$
$=\frac{P_{0}}{e}\left[h+k^{2} x+\frac{1}{2!} m x^{2}+\frac{1}{2!}\left(h^{2}-m-h k^{2}\right) y^{2}+\ldots\right]$

$$
B_{S}=\frac{1}{1+h x}\left[A_{10}{ }^{\prime} y+A_{11}{ }^{\prime} x y+\ldots ?\right.
$$

$$
=\frac{P}{e}\left[h^{\prime} y+\left(2 k k^{\prime}-h h^{\prime}\right) x y+\ldots\right]
$$

(a prime means differentiation with respeet to s)
with the following multipolefunctions (functions of s!):
$h(s)=\frac{e}{P_{0}} B_{y} \left\lvert\, \quad x=y=0=\frac{e}{P_{O}} A_{10} \quad\right.$: dipole; $k^{2}(s)=\left.\frac{e}{P_{0}} \frac{\partial B_{y} y}{\partial x}\right|_{x=y=0}=\frac{e}{P_{0}} A_{11} \quad$: quadrupole; $\left.m(s)=\frac{e}{P_{0}} \frac{\partial^{2} B x^{2}}{\partial x^{2}} \right\rvert\, x=y=0=\frac{e}{P_{0}} A_{12} \quad$: sextupole; $o(s)=\left.\frac{e}{P_{0}} \frac{\partial^{3} B_{y}}{\partial x^{3}}\right|_{x=y=0}=\frac{e}{P_{0}} A_{13} \quad$: octupole; $\left.d(3)=\frac{e}{P_{0}} \frac{\partial^{3} B^{3} y}{\partial x^{3}} \right\rvert\, x=y=0-\frac{e}{P_{0}} A_{14} \quad$: decapole.

We calculated these multipolefunctions by numerioal differentiation of the field along the normal direction of the curved reference orbit. Eig. $2-6$ show these functions for the 180° bernding magnet. The abscissa starts at $s=0$ which represents the symmetry point in the middle of the magnet. For the dipole and quadrupole functions the corresponding hard edge model has been indicated as well. As expectod, the true field, which is produced by the superconducting air-coil arrangement, deviates drastically from a hard edge model, especially in the entrance and exit regions of the magnet.

* now at ESRF, Grenoble
finear ontios
For the linear particle dynamics only the dipole and quadrupole field functions are needed． linear optics program called peccs has been devel－ oped．This program calculates twiss functions， chromaticities and radiation integrals $I_{1}-I_{5}$ in the presence of standard isomagnets and non－iso－ magnets characterized by $\mathrm{h}(\mathrm{s})$ and $\mathrm{k}^{2}(\mathrm{~s})$ ．In the program the functions $h(s)$ and $k^{2}(s)$ are evaluated at arbitrary arguments by third order spline ap－ proximations．The characteristic first order trajec－ tories，（matrix elements）of the system $\left[C_{i}, C_{i}{ }^{\prime}\right.$ ， $\left.S_{i}, S_{i}{ }^{\prime}, d_{i}, d_{i}^{\prime}(i=x, y)\right]$ are integrated by a forth order Runge－Kutta algorithm．All integrations for averages and radiation integrals around the closed orbit of a circular lattice are evaluated by a 10 －point simpson integration between adjacent points of spline intervals．The differentiation has been performed by a seven point differentiation formula＂with a minimal step size of 2 mm ．For comparison we calculated the optics of two differ－ ent lattices．The first lattice（A）uses a race－ track－shape orbit with two 180° bending magnets and two quadrupoles in each straight section．The second lattice（B）uses four cells with four qua－ drupoles and one 90° magnet in each cell．We com－ pared the results with calculations where we re－ placed the non－isomagnetic dipoles by hard edge dipoles．The results of these calculations have been summarized in Fig． 7 and 8 ，where the 8 －func－ tions and the horizontal dispersions have been presented and in Table 1，where the corresponding lattice parameters are shown．

Non linear calculation
To take into account the higher order multipole functions，we used the kick approximation．In this approximation the abcissa is divided into intervals and the function in that interval is replaced by a correspondingly adjusted kick of infintesimal length．Between each kick we used the linear trans－ formation matrices calculated by the method de－ scribed in the section above．This method，however， does not take into account the dynamic nonlinear parts in the field expansion．The tracking results can be treated by different post－processors which present phase space plots，trajectory plots and Fourier spectra of the betatron motions．As a demonstration of the nonlinear calculations，we show in Fig． 9 the maximal stable emittance for the lattice A．In this case the vertical tune has been fixed and the horizontal tune was scanned．In the presence of only sextupoles the resonances $3 Q_{x}=4$ and $2 Q_{y}+Q_{x}=4$ show up as strong dips．By adding higher multipoles the resonances are shifted and smeared out．

References
TK．G．Steffen，＂High Energy Beam Optics＂． Interscience Publishers 1965
${ }^{2}$ W．－D．Klotz，R．Maier，＂3－D Magnetfeld Berechnung des COSY－Magneten＂，BESSY TB 71／85 COSY（Januar 1985）
${ }^{3}$ K．L．Brown，R．V．Servranckx，＂First－and Second－order Charged Particle Optics＂， SLAC－PUB－3381（July 1984）
${ }^{4}$ W．G．Bickley，＂Formulae for Numerical Differentiation＂，Math．Gaz．25，19－27（1941）

	Lattice A Circumference：9，6m； \＃of cells＝ 2		Lattice B Circumference：26，88 m； \＃of cells＝ 4	
	isomagn．	non－isom．	isomagn．	non－isom．
Averages over a cell				
＜Beta－x＞	4.48552	4.45979	3.01398	3.17849
〈Gamma－x＞	4.19733	4.10436	1.03884	1.08527
＜Disp．－x＞	1.07664	1.07575	1.04961	1.08146
〈Beta－y〉	3.42053	3.42220	4.30551	4.94499
〈Gamma－y〉	3.40911	3.31318	． 704651	1.10456
$\left\langle 0_{x}^{2 / a e t a-x\rangle}\right.$	． 594826	． 562012	． 383020	． 386725
＜Beta－x（ $D_{x}{ }^{2}+$ Alpha＊$D_{x} /$ Beta $\left.-x\right)^{2}$ ）	2.19785	2.02235	． 10592 ？	9．893644E－02
3eta－x Max	13.1309	13.0249	6.03133	6.45286
3eta－x MIN	． 105977	． 100726	1.13822	1.11946
Beta－y MAX	10.3715	10.1243	5.95513	7.43513
Seta－y MIN	． 125144	． 121981	1.71054	． 814559
Disp－x MAX	3.18625	3.10371	1.87409	1.93081
Disp－x MIN	－． 479585	－． 433279	． 190445	． 196456
Farticle enersy $\quad[\mathrm{MeV}]$	592	592.250	1435.20	1435.20
particle rigidity［ $\mathrm{T}^{\text {m }}$ ］	1.97725	1.97725	4.78905	4.78905
Gammá	1160.00	1160.00	2809.61	2809.61
Revol．time［s］	3．202202E－08	3．202217E－03	8．966209E－08	8．9666208E－08
Pomentum compaction	－6．705356E－03	1．418914E－02	6．796584E－02	$6.737219 \mathrm{E}-02$
Chromatioity－x nat．	－3．20651	3.13560	－2．22212	－2．32144
Chromaticity－y nat．	－2．60435	－2．53032	－1．50728	－2．36272
Tune QX	1.19787	1． 20001	2.25002	2.22596
Tune QY	1.29144	1.28600	1．25002	1.52044
Radiation Integral I1	－6．437111E－02	． 136216	1.82692	1.81097
Radiation Integral I？	14.2800	14.8455	5.24975	5.76368
Radiation Integral I3	32.4545	33.6527	4.38630	5.06559
Hadiation Integral I4	1．662347E－02	$8.290382 \mathrm{EE}-02$	1.27539	1.25439
Radiation Integral 55	62.3055	61.2031	． 969322	1.26575
Damping time－x［s］	$1.535233 \mathrm{E}-02$	$1.483319 \mathrm{E}-03$	1．084096E－03	9．554899E－04
Damping time－y ${ }_{\text {a }}$ ．	$1.533445 \mathrm{E}-03$	$1.475035 \mathrm{E}-03$	8．207221E 04	7．475399E－04
Damping time－z［s］	7．662767E－04	$7.354640 \mathrm{E}-04$	3．559130E－04	3．370385E－04
Damping partition（ $\mathrm{D}-\mathrm{Sands}$ ）	$1.164109 \mathrm{E}-03$	$5.584426 \mathrm{E}-03$	． 242943	． 217637
Energy loss per turn［Mev］	$2.473520 \mathrm{E}-02$	$2.571482 \mathrm{E}-02$	． 313585	． 344284
Enersy spread	$7.663496 \mathrm{E}-04$	7．642154E－04	1．062631E－02	$1.096053 \mathrm{E}-03$
Emittiance－x［ π •m•rad］	2．257109E－05	$2.142191 \mathrm{E}-06$	$7.393054 \mathrm{E}-07$	8．508708E－07

Table 1：Lattice Parameters

(1.00

Fig. ?: Dipol function h(s)

Fig. 3 : Gratient function $k^{2}(s)$ s [a]

Fig. 4: Sextupol function $m(s) \quad s|m|$

Fig. 5: Octupal function o(3)

Fig. 6: Decapol function $d(s)$

Fig. 8: Twiss functions of Lattice R

sig. 9: Horizontal tune va. maximal stable emittance of Lattice A

