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Introduction 
The develoDment of COmDact storage rings which use 
Superconducting air-co; 1 magnets- for -the bending 
dipoles has made it necessary to refine the method 
of existing Linear lattice codes. To our knowl- 
edge, there exists no linear lattice code that 
exactly takes into account, the strongly non-iscna- 
gnetic field shape t:iat is produced by this type of 
magnet. A set of programs has been developed at 
BESSY which tackle this problem. These codes are 
especially useful for studying the influence of 
insertion devices on the lir.ear particle dyr,amics. 

Reference orbit 
In a system wit,h isomagnetic elements, the refer- 
ence orbit is a simple sequence of straights and 
arcs. In non-isomagnetic fields the reference orbit 
has to be calculated by numeric integration. In any 
magnetic field with midplane symmetry the magnetic 
field vector is perpendicular to this plane for any 
point in this plane. Therefore, a charged particle 
with initial velocity vector parallel to this plane 
will never leave the plane. The exact motion of the 
particle is given by the differential equation’ 

I , 
Y 

(1+v’“)?‘T ^ 
= k B, (x,y) ; Y = y(x) (1) 

with: x,y : cartesign coordinates in the plane 
z : Cartesian coordinate perpendicular to 

the plane 
Y’ = dy:dx, y” = d2y/dx2 

e : particle charge 

PO : particle momentlum 
B z : magnetic induction 

Transforming equation (1) to polar coordinates, we 
arrive at the differential eauation 

r2 + rx2 - p r” 
’ B,(r,Q) (r2 - r”q”‘z- = p ; r = r($) (2) 

This equation can easily be transformed to a system 
of first order differential equations and then be 
integrated in a given field D, with given boundary 
conditioas r’(l), r’(2) at the entrance and exit to 
the magnetic field. 

We have studied two different bending magnets with 
this method. A magnet with a bending angle of 180°, 
consisting of three banar.a shaped coils and a 
similar magnet of 90’ bending angle. The magnetic 
midplane is defined by the symmetrical arrangement 
of each pair of coils above and below this plane. 
The magnetic in&lotion B, in the plane was ealcu- 
lated by a field code for handling general current 
carrying conductors in three dimensions’ by evalu- 
ating the Biot-Savart-Law. Fig. 1 shows the top 
view upon one half of the coil arrangement of the 
180° magnet. In the same figure the isomagnetic and 
non-isomagnetic orbits are shown, too. Due to the 
symmetry of the magnet, the boundary conditions for 
the reference orbit have to be set to r’(@ = 0) = 
r’(+ = 90”) = 0. This orbit represents the ideal 
equilibrium orbit for a reference particle with 
momentum PO. 
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Field expansion 
For calculating the linear particle dynamics we use 
the expanded form ‘of a magnetic field with midplane 
symmetry, as has been provided by Brown and 
Servranckx’. They express the magnetic induction in 
a general right-handed curvilinear coordinate 
system (x,y,s) moving with the reference particle. 

x : radial coordinate 
y : vertical coordinate 
s : longitudinal coordinate (and Length of 

reference orbit) 

Up to second order this expansion l.ooks like: 

‘3, = A,, y + A,2 x y + . . . = L [ k*y 
e 

+ m x y +...I 

1 ? 1 
By = $0 + d,, x + z A,* x- + I- "3o y? + . . . 

+[h+,$ ' 
1 

x + ;r mx2 + z (h”- m- hk2) 4” A...] 

1 
Rs - 1 + hx 

[A,,‘y + A,,‘xy + . ..] 

= !fI ;h’y + (2kk’ - hh’) x y + . ..I 

(a prime mean: differentiation with respect to s) 

with the following nult 
s!): 

ipolefuncticns (functions of 

h(s) = + By I x=y= 
0 

=- 
0 F e A10 : dipole; 

0 

x=y=o=p eA 11 : quadrupole; 
0 

x=y=o=p eA 12 : sextupole; 
0 

-- 
x=y=o-p e Al3 : octupole; 

0 

eA x=y=o=p Iti : decapole, 
0 

We calculated these multipolefunctions by numerical 
differentiation of the fieid along the normal 
direction of the curved reference orbit. Fig. 2 - 5 
show these functions for the 180~ bending magnet. 
The abscissa starts at s = 0 Which represents the 
symmetry point in the middle of the magnet. For the 
dipole and QuadrlJpOle functions the corresponding 
hard edge model has been indicated as well. AS 
expected, the true field, which is produced by the 
superconducting a:r-coil arrangement, deviates 
drastically from a hard edge model, especially in 
the entrance and exit regions of the magnet. 
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Linear optics 
For the linear particle dynamics only the dipole 
and quadrupole field functions are needed. A 
linear optics program called PECCS has been devel- 
oped. This program calculates twiss functions, 
chromaticities and radiation integrals I, - I5 in 
the presence of standard isomagnets and non-iso- 
magnets characterized by h(s) and k*(s). In the 
program the functions h(s) and k2!s) are evaluated 
at arbitrary arguments by third order spline ap- 
proximations.The characteristic first order trajec- 
tories (matrix elements: of the system ‘C. C. ‘, 
Si, Si’, di, di* (i = x,y)] are integrate% bi a 
forth order Runge-Kutta algorithm. All integrations 
for averages and radiation integrals around the 
closed orbit of a circular lattice are evaluated by 
a 1 O-point Simpson integration between adjacent 
points of spline intervals.The differentiation has 
been performed by a seven point differentiation 
formula’ with a minimal step size of 2 mm. For 
comparison we calculated the optics of two differ- 
ent lattices. The first lattice (A) uses a race- 
track-shape orbit with two 18~1~ bending magnets and 
two quadrupoles in each straight section. The 
second lattice (B) uses four cells with four qua- 
drupoles and one 90” magnet in each cell. We com- 
pared the results with calculations where we re- 
placed the non-isomagnetic dipoles by hard edge 
dipoles. The results of these calculations have 
been summarized in Fig. 7 and 8, where the P-func- 
t.ions and the horizontal dispersions have been 
presented and in Table 1, where the corresponding 
lattice paralreters are shown. 

Non linear calculation 
To take into account the higher order multioole 
functions, we used the kick approximation. In this 
approximation the abcissa is divided into intervals 
and the function in that interval is replaced by a 
correspondingly adjusted kick of infintesimal 
length. Between each kick we used the linear trans- 
formation matrices calculated by the method de- 
scribed in the section above. This method, however, 
does not take into account the dynamic nonlinear 
parts in the field expansion. The tracking results 
can be treated by different post-processors which 
present phase space plots, trajectory plots and 
Fourier spectra of the betatron motions. As a 
demonstration of the nonlinear calculations, we 
show in Fig. 9 the maximal stable emittance for the 
lattice A. In this case the vertical tune has been 
fixed and the horizontal tune was scanned. In the 
presence of only sextupoles the resonances 3Qx = 4 
and 2Qy + Qx = 4 show up as strong dips. By adding 
higher multipoles the resonances are shifted and 
smeared out. 
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Lattice A 

Circumference: 9,6 m; 
4 of cells = 2 

Isomagn. non-isom. 

Averages ever a cell 

<Beta-x> 
<Gnmnn-x> 
<Disp.-x> 
<Beta-y> 
<Gamma-y> 
<D 2/Bets-x> 
(Rota-x(D;+AlphaxD,/Beta-x!2) 

3eta-x MAX 
Seta-x MIN 
%ta-y MAX 
Beta-y KIN 
3!3p-x MAX 
Dlsp-x MIN 

Particle energy 
Particle rigidity 
Gamma 

MeQ 

t I T*m 

Revel. time [Sl 
Ibmc?tum compaction 
Chromaticity-x nat. 
Chromaticity-y nat. 
Tune QX 
Tune QY 
Radiat.ion Integral 11 
Radiation Integral 12 
Radiation Integral I3 
Radiation Integral 14 
Radiation Integral 15 
Damping time-x 
Damping time-y 
lOampIng time-2 ! 

s 
9 
s 

Damping partition (D-Sands) 
Energy loss per turn [MeQl 
Ener~(y spread 
Emittance-x [n*m*rad 1 

4.48552 4.45979 
4.19733 4.10436 
1.07664 1.07575 
3.42053 3.42220 
3.40911 3.31218 
.594826 .562012 
2.19785 2.02235 

13.1309 13.0249 6.03133 6.45286 
.105977 .100726 1.13822 1.11946 
10.3715 10.1243 5.95513 7.43513 
.125144 .121901 1.7'054 .a14559 
3.18625 3.10371 1.87409 1.93oar 

-.479585 -.43327Y .190445 .196456 

592 -5.3 
1.97725 
1160.00 

592.250 1435.20 1435.20 
1.97725 4.78905 4.7a905 
1160.00 2809.61 2809.61 

3.%02217E-03 
1.418914E-02 
-3.13560 
-2.53032 

1.20001 
1.28600 
-136216 

3.20iiOZE-08 
-6.705356~-03 

-3.20651 
-2.60435 

I.19787 
1.29144 

-6.437lllE-02 
14.2800 
32.4546 

1.662347E-02 
62.3055 

1.535233E-02 
1.533445E-03 
7.662767E-04 
l.l64109E-03 
2.473520E-02 
7.663496E-04 
2.257109E-05 

14.a455 
33.6527 

a.Z903a2E-02 
61.2031 

1.403319E-03 
1.475035E-03 
7.3546406-04 
5.584426E-03 
2.571482E-02 
7.642154E-04 
2.142191~-06 

Lattice B 
:ircumference: 26,RA m; 
d of cells - 4 

1somagn. non-isom. 

3.01398 
i .03884 
I.04961 
4.30551 
.704651 
.383020 
.105922 

-08 
-02 

\.966209E- 
i.796504E- 
.2.22212 
-1.5072~ 
2.25002 
1.25002 
1.82692 
5.24975 
4.38630 
1.27539 
.969322 

1.084096E 
a.207221E 
3.65913OE 

.242943 

.313585 
1.062631E 
'/.393064E 

-03 
-04 
-04 

-02 
-0: 

3.17849 
1.08527 
1.08146 
4.94499 
1.10456 
.386725 

9.8936'14r:-02 

8.966620aE-08 
6.737219E-02 
-2.32144 
-2.36272 

2.22596 
1.62044 
l.alO97 
5.76368 
5.06559 
1.25439 
1.26575 

9.554899E-04 
?.475399E-04 
3.370885E-04 

.2176x7 

.344284 
l.O96053E-03 
a.50870w07 

Table 1: Lattice Parameters 
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P!g. 2: Dlpol function h(s) 
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“‘ig. 9: Horlmntal twe vs. maximal Stahl* emit- 
tance or Lattice I\ 

Fig. 6: Decapol funct~an d(s) 
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