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1. Summary and conclusions 

In this contribution the approximate limiting 
stable amplitude for the non-linear betatron motion in 
circular accelerators containing sextupoles is derived 
for the purely one dimensional case of the horizontal 
motion. Using as input the beta functions, the 
sextupole positions as well as the sextupole strengths 
and the phase differences between the sextupole 
positions, the algorithm gives an estimate of the 
dynamical aperture at a certain observation point in 
the ring (see Fig. 1). The method used is to derive a 
generalized invariant from Hamilton's equations which 
leads to an integral equation for the action J(e). This 
equation is solved approximately by iteration and the 
limit of stable motion is determined by calculating the 
maximum initial displacement x0 for which the action J 
remains real and positive for all +. The agreement 
between this analysis and tracking experiments in the 
case of a FODO-lattice with two families of sextupoles 
and a more general examole of a LEP-type structure with 
insertions is good. 

2. Generalized -. 

The differential equation of 
from Ref. [I.] and reads as : 

x" + Q* x - $ K'(o 

where K' and 8 are the 

invariants 

betatron-motion is taken 

cs5/* ((3) x2 = 0 , (1) 

sextupole strength and 
horizontal B-function as functions of the azimuth 
e = P/Q. This equation can be derived from the 
Hamiltonian : 

H(x,p) = 3 (Q2 x2 + p*) _ $ K’(e) 85 I: 2 (0) x3, (2) 

with Hamiltons equations : 

dx/de = atvap = p ; dp/de = -aH/ax . (3) 

Multiplying the second equation (3) by P and 
integrating w.r.t. 0, we obtain the expre: ssion : 

+ P2 + Q2 j px de + j px2 f(e) de = C , (4) 

with f(e) = -Q2/2 K'(a) B5i2(8). Now we use the first 
equation (3) in order to eliminate the explicit 

e-dependence from Eq. (4) and we find a formal 
(generalized) invariant, i.e. a constant of the motion 
depending only on the canonical variables x and p : 

' dx p2+Q2x2+2jx2f(j--)dx=C. (5) 
x0 

Finally we perform the usual transformation to 
action-angle variables [Z] as : 

x = J’j2 (4) cos$ , (6) 

p = Q J112 (+) sin$ . (7) 

This yields an integral equation for the unknown J($) : 

J(o) = C - $ F(+,J(+)) . (8) 

F is the double integral contained in Eq. (5) where x 
and p have been replaced by Eqs. (6) and (7). 

3. Iterative solution and stability limit 

The method we choose to solve Eq. (8) approximately is 
to rewrite it as a Picard-type of iteration [3] like : 

Jn+l(+) = C - f F($, Jn(@)I * (9) 

As starting solution Jo(+) we choose the J for the 
linear equation (1) which is a constant and given by : 

Jo=+. (10) 

Inserting this constant into the iteration (9) we find 
a first correction due to the non-linear part of 
Eq. (1) as : 

J, = Jo + $ J3/* / cos2$ sin+ f(- t ) d+ , 
0 

(11) 

We shall denote the integral in Eq. (11) by G(+). From 
the transformations (6) and (7) and from Eq. (11) we 
find the retransformation from JO to x0 when p(0) = 0 : 
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_- i2 G(0) J;i2 + Jo - x0 2=o , (12) 

where we have chosen the negative sign for Jo3i2. 
We are now interested in the maximum stable value 

x0 which, in the case of Eq. (l), leads to a bounded 
motion for all 8. This limit can be found bv 
investigating the transformation (6) from x to J. We 
see that for real J, Q and bounded J this 
transformation must decribe a bounded motion since the 
cos-function is bounded. On the other hand x has to be 
real quantity becpu2e it represents the real motion in 
soace. Now. if J / (4) becomes comolex for a certain 
interval of +, then.cos+ has to become complex and 
therefore behaves 
mechanisms which 

exponentially. 
render J'/ (0) 

Thu,s,m;;e~~ingsho~;~ 

indicate the limit of bounded motion. 
There are two possibilities for J'12 to become 

complex. The first one comes from the transformation 
equation (12). ' 
coefficient of JTgh31,3 equation depending on the 

will either have two real 
solutions, one real double solution, or complex 
solutions. From Eq. (12) we may derive an exact 
criterion for the limiting case of one real double 
solution for JO : 

Now suppose we have found a real solution for Eq. p2), 
then there exists a second possibilitv for J'/ to 
become complex (imaginary). This is obvious if we 
inspect Eq. (11) for J](4) which can be written as : 

J](o) = J,, [l + f$ Jo”2 G($)l - 

Whenever for a certain interval of + the expression in 
the brackets of Eq. (14) becomes negative, then J1’i2 
becomes imaginary and thus x will be unbounded. The 
limit is reached when : 

Min,+ G($J) = - d , 
25’1’ 

0 

and the limiting xn follows from Ea. (12). 
In Fig. 2 we show Ji(+) for two different Jo where 

we used for f(o) = cos(B/Z). We see a stable case (3 
positive) and 'the limiting case where the J-function 
just touches the +-axis. 

(15) 

So at the level of the first iteration, we realize that 
there exist two types of transition to instability : 
the one generated by a complex solution for Jo in 
Eq. (12) we call type 1 instability, while the second 
one, which is due to a negative J1($) for a certain 
interval of +, we denote by type 2 instability. Then 
via Eqs. (12), (13) and (15) we may calculate the two 
values for x0 according to both mechanisms. The real 
limit then is equal to the lower result for x0. 

4. Application to circular accelerators 

We may now 
Eq . 

immediately lapply the theory to 
(1). Since the function - /2 Q K'(0) es/z(e) = 

f(O ) is periodic in 8, we may represent it as a Fourier 
ser ies. If we let f(e) q f(-e), i.e. if we choose the 
observation point such as to be located in a symmetry 
centre of the magnetic structure, we may limit the 
series to cos-terms : 

f(e) = i a, cos ne . 
n=O 

If we use the model of thin sextupoles, then it is 

P 
ossible to calculate the a, exactly to any order 
41. Inserting f(e) into Eq. (11) we see that G($) can 

also be found in closed form. 
We checked the method for the simple case of a 

regular FODO-lattice with two families of sextupoles SF 
and SD located near the focusing and defocusing 
quadrupoles. We used arbitrary integrated2strengths for 
the thin sextupoles : (K'e)F = -0.1 m and (K'a)D= 
0.2 me2. Table 1 shows the limiting x0 as a function of 
Q = 2np for values of 0.3 < Q < 0.39. The agreement 
with the tracking results is very good particularly on 
the above third integer resonance (Q = 1/3). 

Table I 

I u/h I 
x (analytical) 

[cm1 I 

X (tizk;ing) 

I 
1 

0.30 9.4 10.7 
n 11 5.4 8.2 

3.7 5.3 
0.0 0.0 

n D 

“.JL 

0.32 
0.33 
0.34 
0.35 
0.36 
0.37 

1.0 
I 

".O 
2.5 9 2 I 

I 0.38 
0.39 I 

t 
JlOl/J, 

For the interval 0.31 < Q < 0.39 the transition is of 
type 1 and a closed formula for xa in this Q-range is 
given in Ref. \4]. 

The tracking results have been obtained by 
applying a symplectic kickcode to Eq. (1) using the 
above example. In all cases the tracking has been 
extended over so many periods that the amplitude limit 
did not change in a certain limit of accuracy. For a 
detailed description see Ref. [5]. 

As a second example we applied our theory to a 
LEP-type stucture with two insertions, a phase advance 
of n/2 in the regular arcs and 4 families of sextupoles 
SDl, SFl, . . . SD4, SF4. The observation point has been 
chosen as the low+ interaction point where 
BX = 1.75 m. Fig. 3 shows the limiting x0 [cm] at 
this point as a function of SFl. The line belongs to 
the analytical result while the dots represent the 
tracking. 

Fig.2 - Stable and limiting functions J(4). 
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Fig.3 - Dynamical aperture and tracking results for 
LEP-tvoe structure at the low-6 insertions 
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