EXTRACTION STUDIES FOR A 250 MeV SUPERCONDUCTING SYNCHROCYCLOTRON*

M.M. Gordon and X.Y. Wu

National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824-1321

Abstract

A 250 MeV superconducting synchrocyclotron for use in cancer therapy is being designed here with a central field of 57 kG and a pole radius of 21 in . An iteration process that combines magnetic field and orbit computations is being used to design a suitable regenerator and magnetic channel system to extract the beam. Radial phase plots at a sequence of energies show that as the beam accelerates out to the regenerator, the statility region shrinks rapidly to zero spilling the orbits onto the outflowing asymptote along which their radius-gain per turn increases until they can clear the septum and enter the channel. Vertical stability is monitored with an orbit code trat includes all nonlinear effects to fourth order in z. Our results show that strong coupling effects restrict the range of orbit-center displacements and vertical amplitudes that can be extracted successfully. In addition, we find that the regentrator strength decreases rapidiy wilh increasing vertical amplitude.

1. Introduction

Beam extraction from synchrocyclotrons is based on the regenerative process invented by Tuck and Teng and developed by Le Couteur in the l950's. Our choice of regeneraton parameters was derived from an extrapolation of those used in the Harvard cyclotron. ${ }^{1}$

fig. 1 - At top, radial profile of regenerator situated on the edge of the magnet poles. At bottom, field B (solid curve) produced by regenerator, and its gradient dE/dr (broken curve) vs. radius. Plots are for $\theta=180^{\circ}$, the center of the regenerator.

Before the regenerator is added, the v_{z} values risc with increasing cnorgy while the u_{r} values fall. In the present design, these values cross the $v_{r}=2 v_{z}$ ($n=0.2$) resonance at 19.1 in., and this radius determines the approximate starting point for the regenerator.

The iron configuration of the proposed regenerator is shown schematioally in Fig. 1 along with the fieid change and field gradient that it produces. This device has an average angular width of 30°, and has terraced edges to smooth out the azimuthal field variations.

The regenerator provides a powerful field bump whose strong gradient drives v_{r} into the $v_{r}=2 / 2$ stop-band while simultaneously depressing v_{z}. mins is shown in Fig. 2 where v_{r} and $2 v_{z}$ are plotted as a function of energy. The pair of curves for the unperturbed field come together and cross at 258.9 MeV, where $n=0.2$ as noted above. With the regenerator present, the two curves diverge with v_{r} rising sharply to $v_{r}=1$ at 253.7 MeV , which becomes the peak energy of the extracted protons. At this point, $v_{z}=0.29$.

2. Radial Motion

The nature of the extraction process can best be understood by examining radial phase plots like the one shown in Fig. 3 for 252.5 MeV. Here values of p_{x} vs. x are plotted once per turn at $\theta=180^{\circ}$ (the center of the regenerator) for three different orbits,

Fig. 2-- Plots of ν_{r} and $2 \nu_{z}$ vs. energy both without regenerator (broken eurve) and with regenerdior aded (solid curve). $v_{r}=1$ at 253.7 Mev, the peak extractior. energy.
one stable anc two unstable, which clearly show the boundary of the stability region. This region shrinks to zero at 253.7 MeV where $v_{r}=1$, ard is sufficiently
large at 252.0 MeV to encompass most of the internal beam that can survive the extraction process.

Ore car therefore see that as the protons accelerate outward, they encounter a rapidly shrinking stability region that eventually causes their orbits to spill aver the boundary into the radially unstable region. As showri in Fig. 3, the phase points then move onto the outflowing asymptote along which their radius-gain per turn inereeses exponentially thereby enajling the protons to clear the septum and enter the magnetic charmel.

Vertical stability ultimately limits the radiusGain per turn that can safely be achieved in the regenerative process. That is, as the orbits move frogessively farther off center, strong coupling effects evertually causo the vertical height of the Deam to expand beyond the allowed limits.

FiE. ? ... 3adial phase plots for three orbits at 252.5 Mer showing stability region and asymptotes produced ty regenerator. The stabillty region shrinks to zero at 253.7 MeV .

Fig. 4 - Plots of r vs. θ for the last four turns of the two unstable orbits (depioted in Fig. 3) showing growth in tirn separation at $\theta=112^{\circ}$, the channel entrance. The regenerator shims lie within an area Erom $=162^{\circ}$ to 143° and from $r=19.25$ to 21.5 in .

Figure 4 shows plots of r vs. θ between $\theta=25^{\circ}$ and 205° corresponding to the last four turns of the two radially unstable orbits depicted in fig. 3. These plots (and those in Fig. 3) have been terminated before the vertinal motion becomes seriously unstable. In addition to showing the characteristic "node" near $\theta=50^{\circ}$, these r vs. θ plots indicate that a radius gain per turn of about 0.5 in. can be achieved near θ $=112^{\circ}$ where the channel septum would be inserted.

An examination of data like that in Fig. 4 for a range of energies indicates that the channel septum should be located at $r=19.65+0.05 \mathrm{in}$. Assuming that the ohannel apersure is 0.5 in . wide, the outer wall of this element would occupy $20.25 \pm 0.05 \mathrm{in}$. For all of the orbits described below, it is assumed that the protons enter the channel when the r value of their orbits lies within these limits at $\theta=112^{\circ}$, and this part of our extraction study stops at that point.

3. Vertical Motion

The impact of the vertica: motion on the extraction process is investigated using the Z^{4} orbit Code which is based on exact equations of motion and magnetic field components that are correct to fourth order in z. ${ }^{\text {o }}$ In addition to a given starting value for (r, p_{r}) at each energy investigated, the initial conditions consist of eight $\left(z, p_{z}\right)$ points uniformly spaced around an eigenellipse having a given maximum height $\Delta z_{0}{ }^{\circ}$ Actuaily, as a result of median plane symmetry, only four distinct (z, p_{z}) values are required.

Because of the shrinking stability region, protons with large orbil-center displacemerts begin extraction at lower energies than those with small displacements. The lower energy extraction orbits therefore suffer the largest growth in vertical heignt as a result of the coupling action. This is shown in Fig. 5 where the height Δz is plotted as a function of turn number for four different energies from 252.0 to 253.5 MeV. In each case: $\Delta z_{0}=0.1 \mathrm{in}$., a relat:vely small value, and the initial (r, p_{r}) point was chosen so that the protons reach the ahannel entrance in about 24 turns.

As can be seen, the maximum taz value increases by a factor ranging fror 3.4 at 252.0 MeV down to 3.3 at 253.5 Mev. Moreover, as Δz_{o} increases, the resultant growth factor at each erergy also appears to increase, although the relevant orbit data become complicated because of other phenomena irvolving the racial motion.

Indeed, we find trat the concurrent coupling of the vertical into the radial motion ceereases the strength of the regenerator, and this weakening grows rapidy with increasing vertical amplitude. Tre nel effect for a giver (r, P_{r}) value is to inorease the number of turns requined to reach the ohanrel entrance. Moreover, this increase in tirn number is a complicated (seemingly discontinuous) function of both the phaso and amplitude of the vertical oscillations. Such behavior is, of course, a consequence of the nonlinearities.

To show how this develops, we first note that the data on which Fig. 5 is based reveal that all of the orbits for 253.5 MeV enter the channel on turn 24. On the other hand, those for 252.0 MeV require between 22 and 28 turns although only 21 turns are required whon $z=p_{z}=0$. The corresponding data for 252.5 and
253.0 Mev show a smooth transition between these two cases.

The situation becomes much rore complicated when Δz_{0} is increased from 0.1 in. to 0.2 in., assuming the same initial (r, p_{r}) values. For 253.5 MeV, the Δz \$rowth factor inereases slightly from 1.3 to 1.5 , while the number of turns inoreases from 24 to 26-28. Eor 253.0 MeV, however, the growth factor is undefined since the turn numbers for the four orbits change (rrom 21-25) to a dispersec set: $26,32,74$, and an undetermined number (>500). This type of behavior also occurs at 252.5 and 252.0 mev.

Fiz. 5-Plots of height Δz vs. turn number for a group of orbits having an initial height $\Delta z_{0}=0.1 \mathrm{in}$. and energies from 252.0 MeV (bottom) to 253.5 MeV (top). Ali orbits run for about 24 turns to reach the channel entrance.

What happens bere is that some of the orbits do not proceed directly to extraction, but instedd retur's to the stability region where they execute one or more precession cycles before exiting again. When the value of Δz_{0} is increased still further, tris behavior becomes very prevalent and corresponds, in effect, to a growth in the stability region.

We should note that the damping factor $\left(B v_{z}\right)^{-1 / 2}$ will cause the beam height to shrink by a factor of two between $r=1.0 \mathrm{in}$. and $r=18 \mathrm{in}$. Assuming the beam fills the vertical aperture in the central region, some beam loss will therefore occur whenever the growth factur ror $\Delta \angle$ (desoribed above) exceeds about two. As indicated by our data thus far, severe beam loss will occur for the part of the beam that begins extraction below about 252 MeV, while only a small loss will occur for the part above 253 MeV . As a result, the energy spread within the extracted beam should be about 1.5 MeV .

Our resuits also suggest that it might be advantageous to purposely restrict the beam height in the central region since even though this would reduce the current reaching the regenerator, it would also reduce the machine activation due to vertical blow-up, and might even improve the net extraction efficiency to the point where the loss in extracted current would not be significant.

[^0]
[^0]: References
 *Work supported by the National Science Foundation under Grant NO. PHY-86-11210.

 1. C. Calame, et.al., Nuel. Instr. and Meth. 1,1957) 169.
 2. M.M. Cordon and V. Taivassaio, Nuel. Instr and Meth. A247(1986)423.
