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Summary 

Methods for acceleration of polarized protons in 
the proposed TRIUMF KAON factory are examined. Two ways 
of improving polarization transfer will be treated: 
reducing the strength of depolarizing resonances by re- 
designing the lattice using spin matching, and Siberian 
snakes. It is shown that with a redesigned lattice 
about 70% polarization transfer through the accelera- 
tors is feasible using fast resonance crossing and 
adiabatic spin flip, providing about 55% polarization 
at 30 GeV energy. With a Siberian snake in the Driver, 
essentially no depolarization should occur and about 
80% final polarization is feasible. 

Introduction 

Position and strength of the depolarizing reso- 
nances in the KAON factory accelerators1 have been 
calculated using the program DEPOL.* The intrinsic 
resonances are given by the condition 

yG = kf-vy , (1) 

while the imperfection resonances are given by 

yG=k, (2) 

where G = 1.7928 is the magnetic anomaly of the proton 
and y is the relativistic energy. yG is the number of 
spin revolutions per turn. 

In the 3 GeV Booster two intrinsic and five imper- 
fection resonances have to be crossed; in the 30 GeV 
Driver there are 9 intrinsic resonances and 53 imper- 
fection resonances (Fig. 1). The invariant emittance 
used for calculation of the intrinsic resonances was 
10 nmm-mrad, consistent with the space-charge limit for 
LO-20 uA of polarized protons in the machines. Current 
in this range is expected from the optically pumped ion 
source under development at TRILJMF. The figure shows 
the resonance strength normalized by the crossing speed 
to take into account the sinusoidal magnet variation. 

Fig. 1. Depolarizing resonances in the Driver. 
~1 denote intrinsic resonances with the arrows 

pointing to the strength at 1GX of the emit- 
tancc. 1 denote imperfection resonances. 
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As is evident from the figure, the resonance 
strengths are large in the Driver, leading to depolari- 
zation and even spin flip for most of the resonances. 
In the Booster more than 90% of the polarization can be 
preserved. In fact it is found that only 27% polariza- 
tion can be expected at 30 GeV, even if the "classical" 
techniques of fast tune shift or slow adiabatic spin 
flip are applied. 

Reducing the Strength of Depolarizing Resonances 

Since the resonances arise from a coherent contri- 
bution from the superperiods, spin matching has been 
used to design a superperiod that reduces the effect on 
the spin. Because of other constraints like fixed cir- 
cumference and imaginary transition energy, the super- 
periodicity was not to be changed and also the basic 
FODO structure of the focusing elements was considered 
fixed, leaving the distribution of the bending magnets 
in the cells as the major parameter to be varied. 

Only radial fields in the defocusing quadrupoles 
(D-quads) are considered. In the coordinate system 
used, x denotes the radial, y the longitudinal and z 
the axial direction of the machine. The strength of 
the radial fields in the ith D-quad are 

b z,i = gi B,,i cos(~,~i+~o) , (3) 

where gi is the focusing strength, $o is the initial 
betatron phase and Bi is the azimuthal position of 
the quadrupole. 

The change in the polar angle of the polarization 
vector with respect to the y axis in this field is 
given to first order by 

dni a b,,i COS6 (4) 

with 8 being the azimuthal angle of the polarization 
vector around the y axis, given by 

31 = 2vG(NbifNb,tot) + 'do (5) 

for an initial angle Bo, where Nbi is the number 
of bending magnets up to the ith cell and Nb,tot is the 
total number of bending magnets in the ring. 

Inserting this into Eq. (7), summing over all four 
D-quads in a superperiod and using the fact that in our 
case the phase advance per cell is close to 90", we get 
for the deflection of the polarization vector, passing 
through one superperiod, 

dcsp 0: COS$, 
[ 

cosf30 

[si"("yG(N,,&,o)fNb tot , ) 
s~~(~YG(N~~+N~~)/N~,~,~) 

+ Si"(TYG(Nb3-Nbl)fNb,tot) Si"(WG(Nbg+Nbl)fNb tot: > 

x cos(2nvfN,)] 

+ sin8, [same as above]'+ sin oo [other terms], (6) 1 
where Nc is the number of cells in the ring. A factor 
of the form 

sin "YG [(Nbi-Nbi-2)fNb,totl 

is common to all terms including those multiplied by 
sin+0 and determines the contribution of one super- 
period to depolarization. It only involves the number 
of bending magnets between two D-quads 180" apart from 
each other. We will therefore classify the lattices 
according to this number, i.e. a (orn) lattice has m 
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Fig. 2. Depolarizing resonances in the modified 
Driver lattice. 

bending magnets between the first pair of D-quads and n 
magnets between the other pair. 

Table I lists the values of the strength factor 
for 2, 3, and 4 bending magnets between a pair of D- 
quads. 

The Driver lattice of the reference design in the 
KAON factory proposal is a (2-3) lattice in the above 
notation, which has a large value of the strength fac- 
tor for one or the other pair of D-quads for all but 
the 36+vy resonances. This indicates more or less 
even distribution of resonance strength over the full 
energy range of the ring, consistent with the DEPOL 
calculation. 

According to Table I, a (4-4) lattice should have 
less strength in all resonances except the 36+vy 
resonances and equal strength in the O+vy resonance. 
The result of the DEPOL calculation for such a lattice 
is given in Fig. 2 and is in good qualitative agreement 
with the prediction. The layout and lattice functions 
are given in Fig. 3. 

The resonance strength is now concentrated in the 
36?vy resonances, increasing their strength and mak- 
ing spin flip crossing them quite efficient. Using 
tune jump and spin flip, 75% polarization transfer 
through the nine intrinsic resonances in the Driver 

Table I. Resonance-strength factor for a Driver-type 
superperiod. 

Res. G sin wG(ANbi/Nb,tot) 

ANbi = 2 3 4 

o+ 10.18 0.77 0.97 0.97 
24- 13.82 0.93 0.97 0.86 
12+ 22.18 0.93 0.23 -0.66 
36- 25.82 0.77 -0.23 -0.97 
24+ 34.18 0.16 0.97 -0.31 
48- 37.82 -0.16 -0.97 0.31 
36+ 46.18 -0.78 -0.23 0.97 
60- 49.82 -0.93 0.45 0.66 
4ai 58.18 -0.93 0.97 -0.67 

Nb, tot = 72 is the number of bending magnets in the 
Driver. 
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Fig. 3. Lattice factors of the modified Driver lattice. 

with a vertical tune of 10.18 rather than 13.18 can be 
achieved, integrated over the beam distribution. Since 
a similarly modified Booster allows for almost 100% 
polarization transfer, 70% overall polarization 
transfer appears feasible, allowing for 5% residual 
depolarization from the imperfection resonances. 

Siberian Snakes 

A more radical approach to solving the problem of 
depolarizing resonances is the “Siberian snake”, a 
device that rotates the spin by 180” about an axis in 
the horizontal plane,3 equivalent to a rotation of 180” 
about the radial axis followed by a rotation by some 
angle a about the vertical axis. 

In spinor notation the spin motion for one turn in 
an ideal ring having only vertical fields is given byq 

$(?a) = eiTYGuz $(O) = [l- cos 7yG + io, sin nyG]Q(O) 
(7; 

where ai are the Pauli spin matrices and 1 is the 
identity matrix. Equation (1) leads to a resonant con- 
dition if yG is integer because the matrix becomes the 
identity matrix and every spin direction closes on 
itself after one turn, so small perturbations add up 
over many turns. 

The spinor matrix for the snake is given by 

MS = e i(aEb, lo z 1 (8) 

and at an inspection point at a fraction h of the cir- 
cumference we get for a turn in the machine containing 
a snake at 6=O 

M = icrx cos(nyG(l-2X)+u) - icy sin(nyG(l-2X)+a) . (9) 

The term containing the unity matrix has dropped out 
and no resonant condition for any value of yG occurs. 

Practical Siberian Snakes 

Three different snakes have been investigated. 
All designs are based on superconducting magnets with a 
field strength of 3 T to keep the orbit excursions 
small while still using an iron core. 

Steffen Snake 

This design, proposed by K. Steffen,’ consists of 
altogether 10 magnets rotating the spin by either 45” 
or 90” in the horizontal and vertical directions. The 
device is a type-l snake, i.e. the overall spin 
rotation is 180" about the longitudinal axis. Apertures 
needed are 27 cm vertically and 34.5 cm horizontally, 
arising from a beam size of 9 cm by 2.8 cm plus the 
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thickness of the beam pipe and orbit excursions of 
about 22 cm. The total length is about 13 m, assuming 
one gap-size clearance between magnets. 

Helical Snake 

The helical snake was first proposed by Ya. 
Derbenev and later by E.D. Courant.6 A helical, rotat- 
ing field is used with the components 

b, = b cos ks and by = b sin ks . (10) 

For a given number of full twists, n, the spin rotation 
about the field is given by 

bs = nJ4nfl, (11) 

and the transformation matrix of the snake is 

Ms = (-l)n e-i arcsin(nJ(*lJ2))oZ ia 
x * (17-j 

While this snake has comparatively small orbit ex- 
cursions, 5.4 cm for a 3-twist helix at 3 GeV, it in- 
volves construction and operation of a superconducting 
helical wiggler magnet about 6-7 m long. 

Discretized Helix 

The helical snake can be discretized, using 45” 
tilted magnets to avoid the difficulty of building a 
helical magnet of the size required for the continuous 
helical snake. 

Spin rotation for this snake is calculated as 
follo”s : The rotation by an angle a about an axis 
tilted by 45” about the longitudinal axis is given by 

M = e-iu/2bzcosnJ4-oxsinnJ4) 
. (13) 

Again we need a full number of twists, each twist now 
consisting of four magnets tilted against each other by 
90” about the longitudinal axis. The matrix for one 
twist is then 

MS = e -i(o,cosrr/4+oxsinn/4)a/Z e-i(o,cos~/4-oxsinn/4)a/2 

e 
+i(o,cos~/4+oxsinn/4)a/2 eSi(o,cosn/4-oxsinn/4)a12 

(14) 
This can be reduced to 

43 = lJcosa + $?a +io 
\ 

) y(+sinzo) +io, pco< sina sin$). 

(15) 
For the device to act as a snake we need 

cosa + i sin’, = 0 or a = arc cos(1 - fi) (16) 

which gives 2 rad or 114.5” spin rotation in each mag- 
net. The snake matrix can then be written as 

M = .-i arcsin[(sfn22)/21 ia, , (17) 

giving $9” rotation about the vertical axis. 

Table II shows the parameters for numbers of twists 
from one to four for this snake, again assuming one 
gap-size spacing between magnets. A one-twist snake is 
shown i2 Fig. 4. Orbit excursions are larger than for 
:he continuous helix because of the less tightly packed 
magnetic field, but considerably smaller than for the 
Steffen snake for all but the one-twist case. Orbit 
restoration is provided by the horizontal bending mag- 
nets before and after the snake. The strength of the 
orbit restoration magnets is somewhat less than l/J7 
times the strength of the snake magnets. 

Table II. Properties of discretized helical snakes with 
3 T field. 

orbit 
restor. horizon- 

orbit aper- magnet magnet ral spin total 
twists exe . ture length length rotation length 

(cm) (cm) Cm) (4 (ded (ml 

1 32 42 1.13 0.81 213.3 8.22 
2 14 25 0.75 0.53 192.3 9.27 
3 9.2 20 0.60 0.42 186.9 10.58 
4 6.9 17 0.52 0.37 184.9 11.96 

The beam conditions are E* = 10 nmm-mrad, Ap/p = 0.27%. 

SIDE VIEW 

TOP VIEW 
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H 225” 135’ 45” -45” -H 

Fig. 4. Magnet array and orbit excursions for 
the one-twist discretized helical snake. 

A distinct advantage of the discretized helix is 
the fact that many magnets of the same type are used, 
making it more economical. Also, since each magnet can 
be aligned and excited individually and the fields can 
be shaped to a certain extent, aberrations and x-s 
cross coupling can be reduced. 

Conclusion 

In the present work it is demonstrated that spin 
matching can be used to redesign the Driver lattice for 
enhanced polarization transfer. With the modified 
Driver lattice, 55% polarization at 30 GeV appears to 
be feasible assuming 80% polarization at injection into 
the Booster. To further improve on this figure, a new 
Siberian snake has been developed using 45” tilted mag- 
nets that has smaller orbit excursions than other dis- 
crete-magnet designs in the literature. 
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