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A transverse multi-bunch instability in the 
presence of a split in the bet.atron tunes between in- 
dlVJdUR1 3xm-11es 1s studlrd. The formalism is summa- 
r izt:d in a dispersion relat eon. It is found that the 
slmy)le s1 nusnidal trlne modulation by means of an RF0 
produr-es no stable ar-ea in the stability diagram. Two 
cures are presented for expansion of the stable region. 
One Iof them, that lis~ng fractional filling of bunches, 
has an advantage that the width of stable band can 11~ 
controlled by varying the number of missing bunches. 

int roduct Ion 

In a mtlltl-bunch ring, coherent oscillations 
of bunches can be coupled from bunch to bunch t hrougtl 
str-l1ctllres whir-h have Impedances with long memory. A 
hunch leaves behind it a wake field in the strllcturr, 
which perturbs the oscillation of the success1v~ I~IJII- 
ctles. When the system makes a c1osc.d loop, all ttlrl 
bunches execute a coupled osc1 1 lat eon roherentlv with 
a r.rar-tri1n phasrx difference betwrr~n tllcm. 

The growth rate of the multi-bunch instabili- 
ty is proportional to the nrlmher of bunches, i.e., the 
total bunch cur-rent. In a ring with few hunches, a 
single bunch instabil it.y. which is attributed to a 
short-raltge wake f].eld and depends only on the hunch’s 
own current. is dominant and determines the intensity 
threshold. In a ring filled with many bunches, the 
multi-bunch InstabilIty gains in importance, and has 
an instabllitv threshold lower than for the single 
bunch r-ase. 

One cure for the multi-bunch instability 1s 
to lntrodur:e a spread in the oscillation frequencies 
of individual bunches in order to destroy the cohe- 
renre of the coupled oscillations. The spread can be 
provided, for example, by a modulation of the focus- 
sing force with an RF quadrupolc (written as RF0 In 
what follows) in the transverse case, or with a sub- 
harmonic cavity in the longitudinal case. 

Many existing theories assume that bunches are 
equally spaced, equally populated, and have the same 
betatron osc1 llation fl-equency. If one naively extends 
these analyses to the case where M bunches have diffe- 
rent oscillation frequencies, one has M simultaneous 
pquatlons. Mode frequencies are obtalncd by solving the 
M X M eigcnvalue matrix, given the impedance. However, 
we can formulate the problem in a different way [1,21. 
We rearr-singe the M simultaneous equations such that the 
elgenvalue matrix is converted to a kind of dispersioin 
relation. If an instability is attrihuted to the lmpe- 
dance 1n only some of the frequencies (say, L frequen- 
cles), e.g., the frequencies of parastic cavity modes 
w1 t h sharp resonance peaks, the size of the matrix can 
be reduced to L X L. This formalism is much more usefrll 
lf the number of bunches 1s large and the approximation 
of equal bunches does not hold. The purpose of t?lls 
Paper is to present this alternative formalism for the 
dlscltsslon of the stabilization of the transverse mult I- 
bunch lnstablllty due to bunch-to-bunch hetatron fre- 
quency spread. With some modi.fications the formalism 1s 
applicable to the longitudinal case. A bunch is assumlad 
to oscillate rigidly, i.e., the particle distribution 
wlthin a hunch does not change. 

Dj.spersion Relation 

WC conslrier M hunches which osc1 llate r>g1dly, 
each hunch being rei)resented as a singlr macropar-title 
without internal structure Let Y be ttle t r cansvcrs~~ 
coordinate of thta l-th bunrh obser&d at a fixrd angIl- 
lar position 0. The 1-th hunch arr ivcs at, thlr locar- 
tion at time tl. The rquatioll of mot Len for the l-ti-1 
bunr: h 1 s 

cl”)., --- --- + “f y1 
Ii02 

,f?.;f$ )m f-‘Q] 
n-a JO 

x W(+i+T 
M 1 - T I + rlT) y] (O-illin) , 11) 

where u1 and Ql nrr the brtntron tune and the total cchargr 
of the l-th bunch, e 1s th9 elementary i-hargl,, m,, is thr 
rest mass of the part ~cle, y is the Lorentz factor. c LS 
the speed of light, T 31/o+, 1s the r0voluLioil 1 imts, 
and R is the average machlnr radii~s, Th<, tr,ansv+:rse I*‘:lkP 
flllnct1on W(t) is drfincd as rr(lu1rrtl try ~ausnl lty such 
that W(t) vanishes if t < 0. Thr 1)o.slttoll.s of bunchrs 
deviate from equally spaced positions by a f-ixed timc 
devi.ntion rl. Assuming yl 18) Y1 Klue, and int ro1111(~t11;: 
I he ~mpcdancc Z(o)) , we grt 

c-u2 + “f, YI e-J”0 

M-l 
;;;;, >_; Qj .; 1 Z((p + u)o)o) Y, e-l”0 

I 0 P 

x e -2rii (p+\> ) ( l-1 + YllTi -i 
T ) 

If WC introdtlce a functlorl drfinpd b\ 

12) 

Fp : I- Qj yJ .2ni(p+v)( ;, + 7 1. (3) 

j 

we can rearr-allge Eqs. (2) Jntr, an infinite, st,l of 
equations for F,,: 

Frl = ;y$f ,i-, :; ;$y-,,; Z((p + uhJFp 

X ,Zni(q-p) ( i + T+! )_ (4) 

Given the impedance, the elgenvalue v 1s obtalned by 
solving the equatlorr 

det[I - Ml = 0. (Sl 

whew I IS a unit matrix, nnd M 1s a matrix r;lth 
elements 

M-l 

Mqp 
= e!ElL 2 ( ( ,, + ” ,a,) ‘,]I _ _ 

m,,yc”l’ 1- .- 
1:-O uf - v* 

x e2nl(q-p) ( 1 + ‘T’ ) 
M (6) 
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Equation (5) is in fact a dispersion relation. 

The simplest case 1s that the frequency (p + u)wo 
coincides with only one sharp resonator peak. Equa- 
tion (S) then becomes 

(7) 

We now introduce some normalizations and rewrite Equa- 
tion (‘7) in a more convenient form. For the moment, we 
assume that bunches are equally spaced, and equally 
populated: 01 = 4. Then, the dispersion relation can be 
written in the normalized form 

H-l. 
,=- (IJ + iv) . “,” >r- 1 ---__... (8) 

1=0 
Ul - ” 

where vo is the unperturbed tune, Au is the full spread 
in the betatron tunes between bunches, and we have defi- 
ned II and V by 

U + IV = - i (9) 

If U and V are known and if the small u dependence 
of the Impedance can be neglected, M solutions are 
obtained for u by solving a polynomial equation of 
order M given by Equation (9). 

The summation appearing in Equation (8) 

M-l 
S(u) = F- --A-- (10) 

1;o u1-u 

has the singularities that result when the denomina- 
tor of each term vanishes. Obvtously if the eigen- 
frequency, u, is further from the real axis than the 
distance between neighbouring singular points, the 
summation can be replaced by an integral to a good 
approximation: 

Au 

S(U) + A: 
v. + -- 

s 
2 f(Ul) 

-4~ ~1 
---y dul 

vo 2 

-- B- 
s 

I f(x) _-.- 
Au -1 x - x.~ dx’ (11) 

Here F(x) is the normalized distribution function OF 
tune so that s” f(x)dx = 1, and -I 

v - v. 
Xi = dv/i- . (12) 

The dispersion relation becomes 

s 

1 
1 L - (U + iv) -f_LEL dx , (13) 

-1 x - xi 

which is much easier to handle analytically. Roughly 
speaking , the distance between neighbouring singular 
points is Au/M, so that the condition for the repla- 
cement of the summation by the integral is written as 

3” ) &? 
n . (14) 

Sinusoidal Modulation 

The most frequently used tune modulation 
pattern is a sinusoidal one generated by means of an 
RFQ. In this section, we concentrate on the sinusoidal 
modulation, and consider in detail the damping of multi- 
bunch instabilities due to this method. 

Firstly, we again take up the case where the 
frequency (p + v)w, coincides with only one sharp re- 
sonator peak as in the last section. The distribution 
function for the sinusoidal modulation with harmonic 1 
(mOdlJla ti) iS 

f(x) = 2 --.I-- 
“E-73’ 

(IS) 

The integration is readily carried out, with the 
result 

2 > 
1 = f W + iv) zT7e , Rx, < f 1 (16) 

= - (L + iv) 2i - 
n-x; * 

I?R x,1 < 1 (17) 

Equation (17) states that the stability limit curve 
if’x* = 0 moves on the V-axis back and forth once as 
xi varies in the range f 1. As a result, the stabili- 
ty region is enclosed by the two coincident lines and 
has no area. This is seen more clearly from the stabi- 
lity diagram shown in Fig. I. We can draw the interest- 
ing conclusion from this result that a beam cannot in 
principle be stabilized by means of a simple sinusoidal 
tune modulation, no matter how large the tune spread is, 
unless the impedance is purely resistive, which is rare. 
Of course, the growth rate can be reduced to some extent 
by the sinusoidal tune modulation. Thus, in the presence 
of other damping mechanism such as the radiation damping 
In an electron ring, it may be possible to reduce the 
growth rate of the instability to a point where the dam- 
ping due to these mechanism gives a stable beam. 
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Fig. 1 The stability diagram for the sinusoidal 
tune modulation 
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We can show that the above conclusion still 
holds for the case where the frequency (p + u)wo 
coincides with two resonator peaks [‘Al. 

Let us consider various ways to obtain a 
stable region with non-zero area. One idea is to add 
higher harmonic RFQ’s to the main RFQ in such a way 
that the modulation pattern becomes similar to a saw- 
tooth wave form which gives the rectangular tune dis- 
tribution and the round stability diagram [?.I. Another 
idea is to make a gap in the distribution of bunches 
around a ring in such a way that the rapid rise of 
the distribution function (1s) near x = i 1, which 
is the cause of the coincidence of the two stabili- 
ty curves on the V-axis , is removed. We consider the 
latter idea here. 

Our formalism can be readily applied to a 
fractionally filled beam, by pretending that a gap is 
still filled with bunches which consist of, say, only 
one particle. The number of bunches h should be coun- 
ted including these pseudo bunches in the gap. As men- 
tioned, the fact that the distribution function (IS) 
diverges at 8 = arcsin x = i n/2 causes the curve of 
the stability limit to be folded onto the V-axis . We 
therefore make gap, A, around 6 = f n/Z; between 
- n/2 - A/2 and - n/2 + A/2, and between n/2 - A/2 
and n/2 + A/2. 

The stability diagram for A = n/6 is plotted 
in Fig. 2. The stable region forms a band whose full 
width is approxtmately 

To the extent that gaps are allowed, this cure Is a 
rather promising method for enabling the sinusoidal 
tune modulation to work effectively. 
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Fig. 2 The stability diagram for the fractionally 
filled beam. The gap parameter is A = n/6. 
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