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LANDAU DAMPING OF A MULTI-BUNCH INSTABILITY DUE TO
BUNCH-TO-BUNCH TUNE SPREAD

Y.H.

NotkestraBe 85,
Summary

A transverse multi-bunch instability in the
presence of a split in the betatron tunes between in-
dividual hunches is studied. The formalism is summa-
rized in a dispersion relation. It is found that the
simple sinuscidal tune modulation by means of an RFQ
produces no stable area in the stability diagram. Two
cures are presented for expansion of the stable region.
One of them, that using fractional filling of bunches,
has an advantage that the width of stable band can bhe
controlled by varying the number of missing bunches.

Introduction

In a multi-bunch ring, coherent oscillations
of bunches can be coupled from bunch to bunch through
structures which have impedances with long memory. A
bunch leaves behind it a wake field in the structure,
which perturbs the oscillation of the successive bun-—
ches. When the system makes a closed loop, all the
bunches execute a coupled oscillation coherently with
a certain phase difference between them.

The growth rate of the multi-bunch instabili-
ty is proportional te the number of bunches, i.e., the
total bunch current. In a ring with few hunches, a
single bunch instability, which 1is attributed to a
short-range wake field and depends only on the bunch’'s
own current, is dominant and determines the intensity
threshold. In a ring filled with many bunches, the
multi-bunch instability gains in importance, and has
an instability threshold lower than for the single
bunch case.

One cure for the multi-bunch instability is
to introduce a spread in the oscillation frequencies
of individual bunches in order to destroy the cohe-

rence of the coupled oscillations. The spread can be
provided, for example, by a modulation of the focus-
sing force with an RF quadrupole (written as RFQ in
what follows) in the transverse case, or with a sub-
harmonic cavity in the longitudinal case.

Many existing theories assume that bunches are
equally spaced, equally populated, and have the same
betatron oscillation frequency. If one naively extends
these analyses to the case where M bunches have diffe-
rent oscillation frequencies, one has M simultaneous
equations. Mode frequencies are obtained by solving the
M X M eigenvalue matrix, given the impedance. However,
we can formulate the problem in a different way [1,2].
We rearrange the M simultaneous equations such that the
eigenvalue matrix is converted to a kind of dispersion
relation. If an instability is attributed to the impe-
dance in only some of the frequencies (say, L frequen-
cies), e.g., the frequencies of parastic cavity modes
with sharp resonance peaks, the size of the matrix can
be reduced to L X L. This formalism is much more useful
if the number of bunches is large and the approximation
of equal bunches does not hold. The purpose of this
paper 1s to present this alternative formalism for the
discussion of the stabilization of the transverse multi-
bunch instabhility due to bunch-to-bunch betatron fre-
quency spread. With some modifications the formalism is
applicable to the longitudinal case. A bunch is assumed
to oscillate rigidly, i.e., the particle distribution
within a bunch does not change.
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Dispersion Relation

We consider M bunches which oscillate rigidly,
each bunch being represented as a single macroparticle
without internal structure Let v. be the transverse
coordinate of the 1-th bunch observed at a fixed angu-
lar position ®. The 1-th bunch arrives at this loca-

tion at time tyj. The equation of motion for the 1-th
bunch is M1
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where vy and Qf are the betatron tune and the total charge
of the i-th bunch, e is the elementary charge, m, is the
rest mass of the particle, v is the Lorentz factor, ¢ is
the speed of light, T 2n/w, is the revolution time,
and R is the average machine radius. The transverse wake
function W(t) is defined as required by causality such
that W(t) vanishes if t < 0. The positions of bunches
deviate from equally spaced positions by a fixed time
deviation ty. Assuming yy1(6) = Y,y eTiV0  and introducing
the impedance Z(w), we get
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If we introduce a function defined by
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we ¢an rearrange Eqs. (2) into an infinite set of
equations for Fp:
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Given the impedance,
solving the equation

the eigenvalue v is obtained by

det{X — M] = 0, (5)
where I is a unit matrix, and M is a matrix with
elements
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Equation (5) is in fact a dispersion relation.

The simplest case is that the frequency (p + vluw,
coincides with only one sharp resonator peak. Equa-
tion (5) then becomes

1 = === Z({p + vViwg ;A

We now introduce some normalizations and rewrite Equa-
tion (7) in a more convenient form. For the moment, we
assume that bunches are equally spaced, and equally
populated: Q) = Q. Then, the dispersion relation can be
written in the normalized form

1=~ (U+1ivV) . "
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where v, is the unperturbed tune, Av is the full spread

in the betatron tunes between bunches, and we have defi-
ned U and V by
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If U and V are knewn and if the small v dependence
of the impedance can be neglected, M solutions are
obtained for v by solving a polynomial equation of
order M given by Equation (9).

The summation appearing in Equation (8)

S(v) = } . (10
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has the singularities that result when the denomina-
tor of each term vanishes. Obviously if the eigen-—
frequency, v, is further from the real axis than the
distance Dbelween neighbouring singular points, the
summation can be replaced by an integral to a good
approximation:
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Here f{(x) is the normalized distribution function of
tune so that f{x)dx = 1, and
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The dispersion relation becomes
1
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which is much easier to handle analytically.. Roughly

speaking, the distance between neighbouring singular

points is Av/M, so that the condition for the repla-

cement of the summation by the integral is written as
Av

Jv > M - (14>
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Sinuseidal Modulation

The most frequently used tune modulation
pattern is a sinusoidal one generated by means of an
RFQ. In this section, we concentrate on the sinusoidal
modulation, and consider in detail the damping of multi-
bunch instabilities due to this method.

Firstly, we again take up the case where the
frequency (p + v)w, coincides with only one sharp re-
sonator peak as in the last section. The distribution
function for the sinusoidal modulation with harmonic 1
{modula M) is
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The integration is readily carried out, with the
result
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Equation (17) states that the stability 1limit curve
Fx, = 0 moves on the V-axis back and forth once as
x, varies in the range * 1. As a result, the stabili-
ty region is enclosed by the two coincident lines and
has no area. This is seen more clearly from the stabi-
lity diagram shown in Fig. 1. We can draw the interest-
ing conclusion from this result that a beam cannot in
principle be stabilized by means of a simple sinusoidal
tune modulation, no matter how large the tune spread is,
unless the impedance is purely resistive, which is rare.
Of course, the growth rate can be reduced to some extent
by the sinusoidal tune modulation. Thus, in the presence
of other damping mechanism such as the radiation damping
in an electron ring, it may be possible to reduce the
growth rate of the instability to a point where the dam-
ping due to these mechanism gilves a stable beam.
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Fig. 1 The stability diagram for the sinusoidal
tune modulation

PAC 1987



We can show that the above conclusion still
holds for the case where the frequency (p + vla,
coincides with two resonator peaks [2].

Let wus congsider various ways to obtain a
stable region with non-zero area. One idea is to add
higher harmonic RFQ’s to the main RFQ in such a way
that the modulation pattern becomes similar to a saw-
tooth wave form which gilves the rectangular tune dis-
tribution and the round stability diagram [2]. Another
idea is to make a gap in the distribution of bunches
around a ring in such a way that the rapid rise of
the distribution function (15) near x = % 1, which
is the cause of the coincidence of the two stabili-
ty curves on the V-axis , is removed. We consider the
latter idea here.

Our formalism can be readily applied to a
fractionally filled beam, by pretending that a gap is
st1ll filled with bunches which consist of, say, only
one particle. The number of bunches M should bhe coun-
ted including these pseudo bunches in the gap. As men-
tioned, the fact that the distribution function (15)
diverges at © = arcsin x = t m/2 causes the curve of
the stability limit to be folded onto the V-axis . We
therefore make gap, A, around 6 = % n/2; between
- n/2 - A/2 and - n/2 + A/2, and between n/2 - A/2
and n/2 + A/2.

The stability diagram for & = n/6 is plotted
in Fig. 2. The stable region forms a band whose full
vidth is approximately

av = 8. (18)
n
To the extent that gaps are allowed, this cure is a
rather promising method for enabling the sinusoidal
tune modulation to work effectively.

Reference

[1] D. M38hl, “Bunch to Bunch Frequency Spread to Sta-
bilize Coherent Oscillations in the Absence of
Active Feedback'", CERN Report MPS/PL/70-9 (1977).

[2]} Y.H. Chin and K. Yokoya, "Landau Damping of a
Multi~Bunch Instability due to Bunch-to-Bunch
Tune Spread'", DESY 86-097 (1986).

1215

o2 ow T o

J \\w/ "
™

2 F

B L

T T T T T T T 7 n T T ™

Fig. 2 The stability diagram for the fractionally
filled beam. The gap parameter is A = n/6.

PAC 1987



