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INTRODUCTION

In this paper, the problem of cumulative beam
break up in a periodic linac for a general impedance is
discussed, with the effects of acceleration included. The
transverse equations of motion for a set of identical point
like bunches moving along the length of the linac are cast
into a simple form using a smooth approximation. This
results in a working formula that is used to analyze beam
breakup. Explicit expressions for the transverse motion
in the case of a single resonance impedance are found
using saddle point integration. This is done first with no
external focusing, and again in the strong focusing limit.

EQUATION OF MOTION

Cousider a sequence of equally spaced point like
bunches moving down a linac with positions defined by

2y = ¢t —Mer, M =0,1, -~ co. (1)

Here 7 is the bunch separation in seconds, ¢ is the speed
of light, and M is a bunch labelling index.

The equation of motion for the transverse displace-
ment 3, of bunch M is given by
K3 v (z) doy (2)
dz N dz
Here + (2 ) is the beam energy in units of the rest energy.
The function K (z) describes the external transverse
focusing and is equal to ~y times the focusing function
used in circular accelerator theory.

+ K (z) oy (2)=Fp(z), =220.(2)

Fyr(2) is the transverse wake field force resulting
from the passage of earlier bunches:

o o0

Fylz)=¢€*Ng >, > 6(z ~NL) Sy 70 (z) (3)

m =0 N =0
where ¢ is the electronic charge, Np is the number of
particles per bunch, and

Spr-m = G [(M-m ). (4)
G (t) is the transverse wake function, vanishing for ¢ <0
due to causality.

Formula (3) assumes that the accelerating cavities
are placed periodically at positions
# =NL, N =0,1, --, and that they have
infinitessimal length, acting like thin lenses.

THE SMOOTH APPROXIMATION

In the case of a coasting beam (v = const.), a for-
mal solution of eqn. (3) can be found for the case where
K (z) is periodic with period L. This is not easily done
when acceleration is included, and certain simplifying
assumptions are useful. First, assume that the sum of
delta functions in eqn. (3) can replaced by 1/L. This
serves to smooth out the effect of the transverse kicks of
the cavities. Second, assume unifoerm acceleration, i.e.
v =+~ z, where vy and v’ are constants.
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With the above assumptions, a change of indepen-
dent variable from z to u = v allows eqn. (2) to be
rewritten as

1 d dapy(u) 2 2

vt T [-,7-,“”} K(u)ay(u)=

2 2 eQNvB o]

= [ — 3 Smem T (v) (5)
v m =0

Because we are dealing with an initial value prob-
lem, the sum on the right hand side of eqn. (5) extends
from m = 0 to oco. For the case of an infinite number of
equally spaced bunches extending from z = -oo to oc
(i.e. steady state), it would be replaced by a convolution
sum from —oco to +co. Considering the convolution sum
as the product of an oo - dimensional matrix Sy,_,, with
a vector z,,, the matrix can be diagonalized using eigen-
functions

1 - i
T, (4 ):5;: (u,8) e=™?
m= -oc0, ' 00, 0<L8< 2w, (6)

The solution of the initial value problem can be
expressed as a superposition of these eigenfunctions:

2
zm(u):_;;{dﬂ S (u,8) e ™9, (7)
or, equivalently,
o0 8
E(ud)= 3% e a,(u). (8)
m =0

Insertion of eqn. {8) into the equation of motion (5)
results in a differential equation for the transformed funec-
tion £ (u ,8).

v da Vg B0
2
+{;?,— (K (u)- A@)] E (u,6) =0 (9)
where
CQNB s8] .
A(B) = 58, eme (10)
L m =0

Equations (9) and (7) are the working formulae from
which the transverse trajectories z3;(u) can be found
given a focusing function K (v) and wake function
Spf o -

INITIAL CONDITIONS

The initial conditions for transverse bunch position
and angle are translated into initial conditions for E (u ,f)
using eqn. (8). Consider the case where the leading
bunch (M = 0) is initially offset by an amount z4, with
successive  bunches entering the linac on axis
(zpr (2 o) = 0, M£0). Assuming that all the bunches
start out moving parallel to the acceleration direction
(dzps /dz = 0), it is seen that

S (uy,8) = x4, (leading bunch initially offset).  (11)
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Here uwg = \/fy_o, with ~, being the injection energy in
units of the particle rest energy.

Because the equation of motion is linear, the solu-
tion of a more general initial value problem can be writ-
ten as a superposition of solutions using an initial condi-
tion of the form of eqn. (11), provided that an appropri-
ate permutation of indices is made.

A second case of interest is the situation where all
bunches are initially offset by an amount z,. In this
case, the initial value of E is given by

= &
E(ug.0) =120 3]
m =0
To o
= = (all bunches initially offset). (12)
1-e

This corresponds to a transverse translation of the
injector relative to the linac by an amount z.

SOLUTION FOR_SMOOTH FOCUSING

Focusing in a linac is usually done with quadrupole
magnets placed at fixed positions along the z-axis, so that
the focusing function K (u) is a piece wise continuous
function. In the spirit of the smooth approximation, the
focusing here is assumed to vary smoothly with the vari-
able u , having no step discontinuities. The most general
form of focusing function K (u ) for which eqn. (9) can be
readily solved is given by

; K, K,
K(v)=K, +~—+—-, (13)
u?
where K o, K |, and K, are constants.
This function decreases with increasing energy.

assuming the constants K, are positive (recall v = V).
This is reasonable behaviour for K (u ), because for con-
stant focusing, the transverse beam size naturally
decreases with increasing energy due to adiabatic damp-
ing, so that a constant beam size could in principle be
maintained if K (u) were to decrease with increasing
energy.
The solution to eqn. (9) using the focusing function
of eqn. (13) can be written as
g (u,0) = u? w (k) (14)
where
1 Ky

o (Al) - Kot

b= il IVEL

) (15)

(16)

f= 2 [A(6)- Ko u
~
= (a0 - Ko, an)

and w (xk,,€) is a solution to Whittaker’s standard form

of the confluent hypergeometric equation:

dw+[1/4+ 1_/4__;_ﬁ‘_]w:04
e € 3
If the constant K ; in egn. (13) is assumed to vanish,
the function E (u,d) can be written in terms of Bessel

(18)

functions:

121

2 (u,8)=A (ug,0) H (au) + B(ugb) HP (au), (19)
where the H,,(i) are Hankel functions of order nu,
o = Ko - AN (20)
and
; 2 . .
V= ['“,v' K. (21)

The quantities A and B are determined from the initial
conditions according to
(22)
o)

Al imaug
By 4
SINGLE RESONANCE MODEL

When the deflecting wakefields inside the accelerat-
ing cavities are modelled by a single resonance, the wake

function G (¢ ), using (4) is given by

E (u079)

1
o du (vo,

H) @ (ot ) 'Hum (eeu )
~HM {oug) HW (o g) ]

—m wT

1 R
— €

= 23
Sm 2m, ¢ Q (23)

2@ sin(m wr) .

where m, is the particle mass, ¢ the speed of light, B
the shunt impedance, and @ the mode quality factor.

Using eqn. (10), it is seen that

A(6) = a sin(wr) (24)
cos(d+ —Ha) — cos{wr)
where
e? Ng R e
- dm, Am, L Q (25)

BREAK UP WITHOUT FOCUSING

For the case where K (u ) = 0, the function E (u ,0)
reduces to a linear combination of modified Bessel func-
tions of order zero. An asymptotic formula using the sin-
gle resonance model can be found by expanding the
Bessel functions for large argument, and using saddle
point integration. The method of Gluckstern, Cooper,
and Channell [1] is followed here.

Using the initial conditions of eqn. (11) {leading
bunch offset), and expanding the Bessel functions, one
arrives at the follow'mg'

a:Mx(Ou ) _ \/(’Zo/ fd g oMb ]: alv-vol} (gsq) j] (26)

where @ is given by eqn. (20), with Ky set equal to zero.
Using the function A(0) of the preceding section,

the exponent giving the largest contribution to the
integral, and its first derivative, can be written as

£(6) = Mo+ L’:{“’;ﬂvm, (27)
4/ _ LM+ (u-ug) sin(6+1wr/2Q) {A(a)]g,/g (28)

do v a sin{wr)
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Saddle points are located by setting df /d 0 equal
to zero. In this way one obtains
. , . 1/3
~— tMa sin{w7)

JA, = - - . (29
Vs u-ugy  sin(f, +1wr/2Q) (29)

The root having the largest positive real part is the most
important, since it appears in an exponent.
Assuming | a /A, | << 1, one can estimate the
value of 0, from eqn. (24):
1wr a .
g, + = wr . (30)

2Q A

8

Inserting this result into eqns. (29) and (27), one
finds the value of the exponent at the dominant saddle
I
point, finally arriving at the result

. ST Gy Mwr .

Ty (1 U/ U M wr - - 3L
‘”(‘*) ~ Y 0{—1 VE ¢ 26 + c.e. (31)

I 2M V37
where
5 7173
Ma (v —uo)f | . )
b= [‘*((“)O—)} et (32)
B 2

The second term in (31) results from the solution where
the right hand side of eqn. (30) changes sign. The
exponent. (32) s the result stated by Ielm and Loew [2]
using a technique of Panofsky, in the limit v >> u,

A necessary condition for the validity of the solu-
tion (31} is that the higher order terms in the Taylor
expansion of f () are small compared to those which are
kept. First write

0.6, )
f (0/) ~ f ({)H)* f 1" (00 )_(____Q_ l:l N

9
"

Fry)

PYRTRY

3f7A(0,)
The sccond term in square brackets in (33) must be
small compared to one over the region where the
integrand is non-negligible (i.e. near the saddle point). In

this region, (#-0, ) has a magnitude less than or equal to
S A I N ER)

/2 (0 ), so that the condition becomes

Y ey

@0,y 4+ (33)

R 1/6
{ﬁ—(%—} = |E |V <<t (34)
Ma (v ~u o)
One must also require that the arguments of the
Bessel functions near the saddle point be large compared
to unity. This gives

2u ) .
|E | >>1, (35)

u —Uqg
2u , ap
|E | >> 1 (36)

U ~Ug

The assumption | e /A, | << 1, used to derive
eqn. (30), reduces to

1

M

[E | << 1. (37)

STRONG FOCUSING

If K{u)= const. = K 0+ an asymptotic solution
can be obtained using eqn. (26), with « given by eqn.
(20). Strong focusing will be taken to mean that K, is
farger in maguitude than A(0) over the region of integra-

tion. Proceeding as before, the saddle points are deter-
mined from
P 1
A2 M~ (KA, ) sin(wr)
s Ut -ug sin(d, + {wr/2Q)
In the strong focusing limit, the quantity A, can be
dropped relative to K g on the right hand side.

(38)

Using eqn. (30) as before, one arrives at the result

o (w)  Vuolu R ﬁg;—‘”»zyl

e S F e - c.c. (39)
z, M Vn Vi c.c. (39]
where
20u -u K
y o Mo o
'Y
and
. aM (u ~u ) 172
Ey= | ——x=" . (41)
SRVALY

Here the second term in eqn. (39) comes from the
(@ — -a) term in eqn. (26).

The condition analagous to (34) is  that
| E,|"Y/? << 1. Relations (35) and (36) become

2 R
7‘, Kgu >>1, (42)
2 - ,
‘:Y—/“\/ K oltp >> 1, (‘13)

and {37} has the same form, but with £ —f 1

INJECTION OFFSET ERROR

If all of the bunches were assumed to enter the linac
offset by an amount z, in the preceding examples, the
integrand in eqn. (26) would have to be multiplied by
(1-e %)), using (12). To first approximation, the results
(31) and (39) can be generalized to this situation simply
by multiplication by (1*610’ 71, since the integrand in
{26) is presumably a highly peaked function of 8 near g, .
This approximation will break down if g, is near
2% mk = integer.

In the case of zero focusing, the first term in eqn.
(31) must be multiplied by

iwr e L £ N
1 e WM (44)

The second term is the complex conjugate of the first, as
before.

For strong focusing, the same is done 1o eqn. (39),
but with £ —FE .
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