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INTRODUCTION 

In this paper, the problem of cumulative beam 
break up in a periodic linac for a general impedance is 
discussed, with t.he effects of acceleration included. The 
transverse equations of motion for a set of identical point 
like bunches moving along the length of the linac are cast 
into a simple form using a smooth approximation. This 
results in a working formula that is used to analyze beam 
breakup. Explicit expressions for the transverse motion 
in the case of a single resonance impedance are found 
using saddle point integration. This is done first with no 
external focllsing, and again in the strong focusing limit. 

EQUATION OF MOTION 

With the above assumptions, a change of indepen- 
dent variable from z to u = fi allows eqn. (2) to be 
rewritten as 

Consider a sequence of equally spaced point like 
bunches moving down a linac with positions defined by 

Zhl = cl -MCT, M = 0, 1, 00. (1) 

Here 7 is the bunch separation in seconds, c is the speed 
of light, and ?vl is a bunch labelling index. 

The equation of motion for the transverse displace- 
ment zzM of bunch M is given by 

d”M (2 ) 
$?idT + K(%)xL.M(Z)= F,(2), % >0.(2) 

Here ? (2 ) is the beam energy in units of the rest energy. 
The function K (z ) describes the external transverse 
focusing and is equal to 7 times the focusing function 
used in circular accelerator theory. 

FM (2 ) is the transverse wake field force resulting 
from the passage of earlier bunches: 

&t(z) = e ‘NB mEo jto 6 (z - N,c ! “$M-m Xv, (2) (3) 

where e is the electronic charge, NB is t,he number of 
particles per bunch, and 

S M-m = G [(Al-m )T] (4) 

G (f ) is the transverse wake function, vanishing for t <0 
due to causality. 

Formula (3) assumes that the accelerating cavities 
are placed periodically at positions 
i =NL, N =O,l, ..(, and that they have 
infinitessimal length. acting like thin lenses. 

THE SMOOTH APPROXIMATION 

In the case of a coasting beam (7 = const.), a for- 
mal solution of eqn. (3) can be found for the case where 
K (2 ) is periodic with period I,. This is not easily done 
when acceleration is included, and certain simplifying 
assumptions are useful. First, assume that the sum of 
delta functions in eqn. (3) can replaced by l/L. This 
serves to smooth out t,he effect of the transverse kicks of 
t,he cavities. Second, assume uniform acceleration. i.e. 
7=70+‘;r z , where y0 and y ’ are constants. 
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1 d ---up 
u du 

(5) 

Because we are dealing with an initial value prob- 
lem, the sum on the right hand side of eqn. (5) extends 
from m = 0 to 00. For the case of an infinite number of 
equally spaced bunches extending from z = -co to oc 
(i.e. steady state), it would be replaced by a convolution 
sum from --oo to +co. Considering the convolution sum 
as the product of an 03 - dimensional matrix S,-, with 
a vector 2, , the matrix can be diagonalized using eigen- 
functions 

5, (u )=-$E (u , 0) eeitne, 

,m= . ..(x). .m, 0-c s< 2T. (6) 

The solution of the initial value problem can be 
expressed as a superposition of these eigenfunctions: 

?a 

x,,, (u ) = $ 1 d B E (u ,O) e -im @, (7) 
0 

or, equivalently, 

E (u ,Q) = E e irrr* x,, (11) (8) 
m =a 

Insertion of eqn. (8) into the equation of motion (5) 
results in a differential equation for the transformed func- 
tion Z (U ,8). 

Id&- 
u du du 

= (u .Q) -I- 

where 

+ [-$ [K (u ) - A(O)] E (u 4) = 0. (9) 

(10) 

Equations (9) and (7) are the working formulae from 
which the transverse trajectories xM(u) can be found 
given a focusing function K (U ) and wake function 
SM-m . 

INITIAL CONDITIONS 

The initial conditions for transverse bunch position 
and angle are translated into initial conditions for E (U ,8) 
using eqn. (8). Consider the case where the leading 
bunch (44 = 0) is initially offset by an amount x0, with 
successive bunches entering the linac on axis 
(xM(uO) = 0, h4#0). Assuming that all the bunches 
start out moving parallel to the acceleration direction 
(dxM /dz = 0), it is seen that 

E (uot Q)=xo, (leading bunch initially offset). (11) 
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IIere u0 = 6, with y0 being the injection energy in 
units of the particle rest energy. 

Because the equation of motion is linear, the solu- 
tion of a more general initial value problem can be writ,- 
ten as a superposition of solutions using an initial condi- 
tion of the form of eqn. (ll), provided that an appropri- 
ate permutation of indices is made. 

,4 second case of interest is the situation where all 
bunches are initially offset by an amount zO. In this 
case. the initial value of E is given by 

E (uo 3 OjExo fJ ,imfl 
m =o 

X0 ___ (all bunches initially offset). (12) 
l- e’@ 

This corresponds to a t,ransverse translation of t,he 
injector relative to the linac by an amount ~0. 

SOLUTION FOR SMOOTH FOCUSING 

Focusing in a linac is usually done with quadrupole 
magnets placed at fixed positions along the z-axis, so that 
the focusing function li (2~ ) is a piece wise continuous 
function. In the spirit of the smooth approximation, the 
focusing here is assumed to vary smoothly with the vari- 
able u , having no step discontinuities. The most general 
form of focusing function I( (u ) for which eqn. (9) can be 
readily- solved is given by 

Ii,, if 2 
If(u)=Ifo+~+-p-, (13) 

where I<,, I< ,, and If? are constants. 

This function decreases with increasing energy. 
assuming the constants K, are positive (recall u = fi,). 
This is reasonable behaviour for K (u ), because for con- 
stant focusing, the transverse beam size naturally 
decreases with inrreasing energy due to adiabatic damp- 
ing, so that a constant beam size could in principle be 
maintained if I( (u ) were to decrease with increasing 
energy. 

The solution to eqn. (9) using the focusing function 
of eqn. (13) can be written as 

2 (u ,0) = u -1’2 w (/c,p,() (14) 

where 

I( 1 

Ic = + [A(O) - I(o]l/2 ’ 
(15) 

p=i[-$-16, (1’3) 

E = -+ [A(0) - If,]'/* 11 

= -+ [(A(Q) - IL',)7]"?, (17) 

and w (R,LL,~) is a solution to Whittaker’s standard form 
of t,he confluent hypergeometric equation: 

d2w 
- + [-l/4 + F + 

1/4--/l' 

d c2 E I 

?u =o. * (18) 

If the constant K, in eqn. (13) is assumed to vanish, 
the function E (1~ ,0) can be written in terms of Bessel 

functions: 

E (u ,8)=,4 (uo,O) H$” (au ) + B(uo,Q) H,i2) (cy,u ) ( (18) 

where the Hj’) are Hankel funct.ions of order nu, 

a = -“-[(If, A(Q)]‘/” , 

7’ 
(20) 

2iIld 

“2 zx [2]2 If, 

7’ 
(21) 

The quantities A and B are determined from the initial 
conditions according to 

SINGLE RESONANCE MODEL 

When the deflecting wakefields inside the i~cceler>~t- 
ing cavities are modelled by a single resonance, the \vake 
function G (t ), using (4) i? given by 

-m ,,iT .,. -. 
$yL-ee 

2mp c Q 
‘lQ sin(m WT) (23) 

where nlP is the particle mass, c the speed of light, X 
the shunt impedance, and & the mode quality factor. 

Using eqn. (lo), it is seen t’hat 
a sin+) 

A(8) = (24) 

cos(0+$$ ~ cos(w7) 

where 

e 2:\r, R 
a =-- 

4?,Z, CL Q 
(25) 

BREAK UP WITHOUT FOCUSING 

For the case where IC (u ) = 0, the function E (U ,ti) 
reduces to a linear combination of modified Bessel func- 
tions of order zero. An asymptotic formula using the sin- 
gle resonance model can be found by expanding t,he 
Bessel functions for large argument, and using saddle 
point integration. The method of Gluckstern. Cooper, 
and Channel1 [l] is followed here. 

Using the initial conditions of eqn. (11) (leading 
bunch offset), and expanding the Bessel functions, one 
arrives at the following: 

‘bf(’ ) -rzz 
x0 

myd 0 e-i.bfo [e idv-UO)+(U--a)] (26) 
47r 0 

where nr is given by eqn. (20), with K. set equal to zero. 

Using the function A(Q) of the preceding section, 
the exponent giving the largest contribution to the 
integral, and its first derivative, can be written as 
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S>~tidl<~ points are located l)y setting dj /d 0 ~cl11al 
to zc’r0. In 1 his way one ol-~t;tins \/xy = i‘l/Cl -/ ’ sinjwr) 1 

l/H 
IL -210 sin(U, + i di-/2Q ) 

(xl) 

‘I‘hc rool having the largest positive real part is the most 
importaIit, ~iiicc it appc’:irs in an csponrtlt. 

Assuming 1 n /a, / << 1, one can est,imate the 
valllc~ of u,* 1’:~olll <‘!jIl. (2-i): 

Q,< id 2 V&IT 2 
ZQ A,5 

lns(‘rting IhiS 1wuli iIlL eqns. (29) and (27), o,,e 
lil~(li the value of tht> t,xponcsrlt at tlic tlorninant saddIp 
point, fin:llly ilrliViI!g at t,lle rcskilt 

J-.%1 (11 1 _ ,qF _~- 
“Al dG 

\m ~ iAhr 
.2lji _ 3f’ 
212 ’ 

J 0 
+cc (31) 

LV he rc 

E; = [ "';y;-go? j"? e* */6 (:32) 

‘l’hr wuind tcrru in (31) rc~sults from tile solutio~l wh(~r(~ 
t,lip right h:lntl hi(le of ecjri. (30) ~ll:ill~<~s sig11. The 
c~s~~~~ic~ril (32) ii t,hr rwl~lt 5(:1! (‘(1 l)y I I(,lrl~ anti I.oew [‘L] 
II-ii rrq :L t c~~lilii:llle of’ Pallof~ky, iI1 t jli’ lill!il ii >> II “. 

A necwsary condition for thy validit!. of the solid- 
ti?)lt (31) i.K tllikt thr higher o1Ylcl~ tcurls in t,he Tayloj~ 
wp2nSion of / (ti) are Yninll cc?~np~w(l to those whirtl ilr(’ 
lic.[,t,. I;irs:t wri1t’ 

(O- 0; )” j (0) 2: / (0.. ) - J ” (0s 17 [I + 

"' (Qz 1 _ 

+ :ij I! (a,$ j (I' Qs ) + (33) 

This swot~~l tcsrrn ir! SC~II:~I~C~ brackets in (38) mil,qt bc 
‘G111:111 cYmlparecl t,o on? over the region where t lie 
irrtv;r:llitl is noll-llcgligil)lc (i.cx. 11o:u’ thci s:~tltllr I,oint ). III 
t!lix mgion, (0 0, ) IlilY 2 mag:l~itliilc 1~5 than or equal t,o 

\/Z/f i ,I I. ” fii ’ so illat the condition bi‘~on~~~s 

[,,(-i:’ r;,,,- j”L I/!- I-‘? << 1 (31) 
Ollc’ rnll,st also rcyuire that ihc argu~rIr~lt.s of the 

llrs-;c~l f1lnc.l ion? Ilear I Iii’ satlrlli~ point 1~ large compar~tf 
to ill:ily. ‘I’tiis gives 

ho 

T I f+; I >> 1. 
0 

(35) 

‘I‘h~? :tsbrlnllJlioll 1 n/A, / << 1, used to derive 
“<,J,. (X)), 1.(‘~111(.(~? to 

+ /E 1 <<l. (37) 

STRONG FOCUSING 

It’ 11. (L! ) = const = Ii (1, an asymptotic solut icli 
~‘;tn I)(, ol)l:iinwl using pq11. (20). with 0 giT,en hy c’qll. 
(L)(l). St lrollg focusing \\ill 1,~ t:~lccn to mean tlrat I\-,, is 
I:~r,gi,r ill Inngnil I~di, tl1:111 A.(O) 0: (‘/1 t hi, Iy$G)ll of iIltqq;L- 

tion. Proceeding ils before, thr sadtllc points are det,c,r- 
mirled from 

il” = My’ (K,- as)‘!2 sin(ti7) 
s 71 -u 0 sin(8, + i&r/2& ) 

(38) 

In the strong focusing limit, the quantity il\, can be 
dropped relative to I<, on thr right hand side. 

Using eqn. (30) as before, one arrives at the result, 

\J,= 
qu U”)~ 

Y’ ’ 
(-IO) 

iLIlcl 

(,11) 

Here the second term in cqn. (XI) comes from tilt, 
( n -+ ct) term in rqn. (36). 

The condition x11slagous 

/ E, / Ii2 << 1. Relations (35) andt&) i;“,‘!,m: 
I>hat 

$&u >>l, (4”) 

+,i’71’;u,>> 1, (43) 

and (37) has thca same form, but with kY il;: 1. 

INJECTION OFFSET ERROR 

If all of the bunches were assumed to enter the linac 
ofket by an amount 2-” in t lie precrtling exampl~~s. the 
hyyyf in. eqn. (26) would have to be multiplied by 

, using (12). To first approximation. the results 
(31) and (39) can be gweralized to this situation simply 
by multiplication by (1-e ’ *’ )-‘, since the integranti in 
(21;) is presumably a highly pealtcd function of 0 near 0, . 
This approximation will break down if 0, is 11631 

L’k 7i.k = integer. 

III the case of i,(‘i‘i! focli$ng. 
(31) niu’it be mult il)lic,d 1,) 

lli(s first lerltl ill vq11. 

1 
-I 

(-1~1) 

The SeCc1llti krm is thr coIlII~l(~x wnjllgntc of t 11~s first, >{A 
before. 

For strong focusing. the Same is kne to etjn. (39), 
but with I:’ +E ,. 
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