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The question, what, is the main factor limiting a particle’s 
lifetime, cannot be answered in general, independent of the 
particular parameters of the accelerator and the size of the 
area in phase space where particles have to be confined. The 
concept of the linear aperture[l] is a very important step in this 
respect. Within the linear aperture the width of the resonances 
of the n-th generation driven by a perturbation proportional 

to (b.)n, bk being the field nonlinearities, goes down with n 
exponentially. This behavior results in the hierarchy of the 
resonances and validates the analysis of the motion within the 
linear aperture in terms of isolated nonlinear resonances[2]. 
Outside of the linear aperture, particles get lost very fast. The 
residue criterion within the linear aperture can be formulated 
in perturbation theory, so that its application requires data 
only on the width and the location of nonlinear resonances. 
In this approximation the criterion is different from Chirikov’s 
criterion only by a numeric factor. The diffusion rate of the 
weak instability also depends on the same parameters of the 
resonances. 

All the above makes the analysis of the first-generation 
resonances within the linear aperture relevant and crucial for 
the analysis of the long-term stability. 

For the numeric simulations, we assume that all multi- 
poles are random, except chromatic sextupoles, which give ad- 
ditional amplitude dependence of the tune[l]. 

The rms tune shifts of the first and the second order are 
given by 

hv, yw) = d 
%Y 

< Vl,Z > 

where E,,~ are related to the amplitudes u,,~ by E = u’/p. 

The first, order tune shift is determined by 

<VI >= t: N, < p >k/2 bkpl/& E,~=Q,~~ 

where < p > is the average value of the beta function, Ntot 
is the number of independent random multipoles per ring and 
bk-1 = < b;-, > 1/2. In the simulations we assumed that Ntot 
is equal to the number of dipoles in the SSC lattice, iVtot = 
3840, and < p > = 300 m. 

The rms tune shift of the second order is given by 

<v, >= --K/4 c7Jx 
N(m)Nm’) < /3 >k < bzr,pl > 

k m. my ft’ 
Ntot tan(rmv) 

E,lj2(k+l+L’)E 
Y 

lP(k--C--L’) [(mZ/EZ) ( k+e+e’)+ (my/E,) (k-e-e’)] ; 

ml = 1/2(k/2 + t? + m,); rn: = 1/2(k/2 + 1’ - m,) 

m2 = 1/2(k/2 + l - m,); m), = 1/2(k/2 + t’ + m,) 

rn3 = 1/2(k/2 - l+ my); rnb = 1/2(k/2 - !!’ - my) 

m4 = 1/2(k/2 - e - my); ml, = 1/2(k/2 - !’ + my) 

t The work has been done at Texas Accelerator Center 

The rms emittance distortion caused by random multipoles can 
be estimated as 

< h,,,/E >= c Ez;m$bk-l N(m) < “,;z”:‘,::, M= Ey My 

For more details of the derivation of the formulas see refer- 
ence[4]. 

The linear aperture is defined so that the tune shift 6v 
and distortion a& are 

6v < 5 x 10-3, AE/& < 0.1 

Given A,,, , these conditions set the tolerable rms multipoles 
bk. The second condition yields the more severe limit on the 
magnitude of the multipoles. For AZmax = 1.5 x 10f3 (or 
0=5 mm) and for on-momentum particles the result is given 
in the table. The last column gives b, as they are specified in 
CDR[lj, Table 4.3.1. 

Tolerable rms bk; vy = 78.280 

h/V: 78.255 78.265 78.280 CDR 

2 0.32 0.30 0.29 2.0 
3 0.17 0.13 0.61 0.3 
4 0.46 0.46 0.42 0.7 
5 0.19 0.52 0.88 0.1 
6 0.57 0.56 0.50 0.2 
7 0.26 0.31 0.91 0.2 
8 0.77 0.73 0.53 0.1 
9 0.40 0.69 1.59 

10 0.92 1.10 0.60 - 
11 0.40 0.46 1.27 - 
12 1.11 0.99 0.69 - 

In the numeric simulations we have found the location and 
the width of the resonances up to 20-th order. The simulation 
has been done in two ways. In the first case, the bk were con- 
sidered as independent with the magnitudes given in the table. 
This assumption overestimates the effect of the field nonlinear- 
ities, because the total field distortion actually remains small 
up to very large amplitudes. For this reason, in the second case 
the total field distortion was constrained as nB/B < low4 at 
a=1 cm, which imposes correlations between multipoles bk, 
which were generated randomly with rms values from the ta- 
ble. 

The locations of the resonances depend on the choice of 
the working point on the tune diagram and vary for different 
sets of random multipoles. The examples can be found in refer- 
encell]. Nevertheless, for all reasonable sets of multipoles, the 
area of the small amplitudes remains free from the resonances. 
The tune shift, the width of the resonances and their number 
increase rapidly with the amplitude. An example is given on 
Figure 1, where the resonances are plotted on the plane of the 
betatron amplitudes (in rms beam size units) A,, A,. 
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‘4 /Kz&O, T>Y = 1 
E = uo”/p = 0.5 x lo-lo m 

The calculation has been done for b ,,, n--2.,.10 from the sec- 
ond column, v, = 78.265, vy = 78.280. The locations of the 
resonances were found only on the axes and in a middle point. 
The straight !ines, connecting these three points, are drawn for 
convenience only. 

Discussion onthe Long-zerm Stability 

In the one-dimensional time-dependent case, the residue 
criterion in pc‘rturbation t,heory asserts that the KAM invariant 
tori arc preserved and the trajectories with the tune v(1) < k/m 
are confiric,(l, if tl:c width i\w,,P 7 4R/m of the nearest to V(O) 
resonances mv 7 k is small enough[5]; i.e., 

1 m I2 Aw,,~ < 213, or mR < l/6 (1) 

To my knowledge, the generalization of this result for the two- 
tiimtmsional rime-depcrtderlt case has not been done. The rea- 
sonnhlf, corl.jrcturc would be to assu~nc that the width of the 
iic,arest rCsonar.ce, trl,V, -+- myVy 7 li, satisfies 

rnrl < I/G, lnll = ~Jm2, +~ rnzy 

Such a condition is in accordance with Chirikov’s criterion.[3] 
For each resonance, the residue parameter (3/2)m2nv,,, 

has been plotted on Figure 2a, vs. amplitude A = 
v: 

_-__ 
A2, + A;. 

The tune and b,, are from table 1, second column. The max- 
ir11um stable arcplitude A-55 (a= 6.7mm). Figure 2b gives 
the same for the case when correlations of b, are taken into 
xc0u11t. A mnx = 68. Figure 2c gives the result for the random 
I), from the last column at the Table 3 (CDG specifications). 
In this case A,,,,, 2 90 (u = 11 mm). So, most of the KAM 
tori wit& amplitudes less than (7-11 mm) are preserved and the 
system is far below the threshold of onset of global stochastic- 
ity. The statement probably remains valid for all reasonable 
sets of random multipoles, although the net of resonances is 
sensitive to their choice. 

Until now we ignored the momentum dependence of the 
tune and the beta functions. This dependence adds spnchrobe- 
tatron sideband resonances: separated by the synchrotron tune 
n8. For the SSC in the storage mode n, = 2 x 10W3. The 
bandwidth depends on the magnitude of the tune modulation. 
If the linear chromaticity is cancelled out by chromatic sex- 
tupoles. then for (A p/p)-10e3, the tune modulation would 

be Au6 - R,. This gives the number of the sideband reso- 
nances close to the order of the primary resonance X -m. The 
synchrobctatron resonances are separated by the distance -4 = 
3. zlccording to the residue criterion, the stochastic layer is 
formed by the synchrobetatron resonances, if 

mR > 1/6(rX)‘/*; X - m (2) 

If it takes place we can expect diffusion with a rate which 
depends on the crossing rate (for Av, - Qs) 

The crossing rate (3) is small, z1 51, if the order of the reso- 
nance m<l9. The diffusion rate, in this case, is given by 

d < Ad > Jd(s/R) = 2Q9 v2 R2 h2 (l/h) 

where the coefficient is taken from the numeric experiments[6]. 
This gives after lo8 revolutions the tune shift 

< (AU)2 > ) 10p4m4En2 l/u 

For m - 10, it is much larger than the maximum /JU allowed 
for staying in the linear aperture. 

The value mn has to be less than the right-hand side of 
the condition (2) to meet the SSC requirements on the lumi- 
nosity lifetime. The condition (2) is looser than the residue 
criterion (1) for the primary resonance. So, if (1) is satisfied, 
the synchrobetatron resonances do not give additional trouble. 

Below the threshold of global stochasticity, the weak insta- 
bilities[7] might be important. The rate of Arnold’s diffusion 
can be estimated as 

d < lb2 > id(sJR) - 32~ e -rrln 

where the coefficient should be regarded as a crude approxi- 
mation. It gives rms nv - 10V2 after 10’ revolutions, if n ( 
0.09. Generally, it is again a looser restraint than that given 

by (1). 
The remaining effect is diffusion driven by the noise in the 

system, including noise of the power supply and noise of the 
“collision assurance system”. Other sources of noise[l] give the 
cmittance growth. 

dE/dt - (lo-l5 - 10-‘7)m/sec 

The time for amplitude growth up to the amplitudes A-20 is 
of order of a year, much more than required by the luminosity 
lifetime. 

The diffusion rate induced by the noise can be enhanced by 
the crossing of the resonance[2, 81, but the effect is very small 
within the linear aperture, because only few of them are there. 
So, it seems that the specifications of the SSC lattice random 
nonlincarities are appropriate for the long-term stability of the 
particles in the collider, as far as motion with the betatron 
amplitudes less than 55 (or 90) rms beam sizes is concerned 
(or 7 mm - 11 mm). The CDR reportjl] gives an estimation 
of 8 mm. On the other hand, it seems that synchrobetatron 
resonances cannot substantially diminish the region of stable 
betatron amplitudes, so the importance of the tracking with 
synchrotron motion might be overestimated. 

All of this is related to the resonances driven by the ran- 
dom nonlinearities in the lattice. The careful study of the non- 
linearities of the beam-beam interaction (and, possibly, their 
crosstalk with the lattice nonlinearities) has to be done sepa- 
rately. 

v - mf12,jR2 (3) 
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