
A MIXED FINITE ELEMENT METHOD FOR 
PARTICLE SIMULATION IN LASERTRON 

G. Le Mew 
Laboratoire de l’AccCl6rateur Lin6aire 

91405 Orsay Cedex, France 

Summary 

A particle simulation code is being developed with the 
aim to treat the motion of charged particles in electromag- 
netic devices, such as Lasertron. The paper describes the use 
of mixed finite element methods in computing the field com- 
ponents, without derivating them from scalar or vector poten- 
tials. Graphical results are shown. 

1. Introduction 

Because of the high intensity of the Lasertron bunched 
beam, the space charge forces and the wake fields are to be 
taken into account. The electromagnetic fields and the parti- 
cle distribution interact strongly. The computer simulations of 
these phenomena are “naturally” derived from “particle meth- 
ads”, using both Eulerian and Lagrangian descriptions’~2J~4. 
In this paper we describe a work in progress : the program PA- 
RADE. In the program PARADE, the equations of motion are 
integrated by classical methods. In solving the field equations 
mixed finite element methods are used. By using these for- 
mulations we avoid derivating the field components from any 
scalar or vector potential : the fields are directly computed 
(more precisely their fluxes). In the case of the Maxwell’s 
equations the mixed finite element methods can be interpreted 
by means of the physical laws such Gauss’s, Faraday’s etc... 

The particle motion in a field represented by the Pois- 
son’s equation (hence including the space charge effects) is 
completely treated in the code. The resolution of the time 
dependent Maxwell’s equations are being implemented. 

2. Poisson’s Equation 

When the particles are non-relativistic, their velocities are 
negligible in comparison with the propagation velocity of the 
electromagnetic fields, these later can be considered as static at 
each time step. They are described by the Poisson’s equation. 

In order to simplify the notations we present here the case 
of the plane symmetry. In the code both cylindrical and plane 
symmetries are treated. 

Let be R the computational domain, with boundary I’, 
ro the fixed potential boundaries (cathode, anode, focusing 
electrode etc...), rl the Neumann boundaries, (lJ = I’o u I’l) 
the Poisson’s equation is : 

i 

-AU=P 

u = r&p,, on r. (1) 
gradd.ii=O on l?l 

p(z, y) is the charge density at the location (z, y), n’ is the unit 
vector normal to the boundary J?. 

Mixed variational formulation 

The principle of this formulation is to take as unknowns 
two functions : the scalar function U and the vector function 

i related by the constraint ,?? = -gradCi. Hence the problem 

(1) b ecomes : 

Find a pair (,!?,cI) such that : 

1 

(u) E’= -gradCi 

(b) divg = ; (2) 

U = U. on r. i.Z=0 Onrl 

After multiplying (2-a) and (2-b) respectively by the “test 
functions” 62 (electric virtual field) and 6U (virtual poten- 
tial), integrating over n and applying the Green’s theorem, 

the following relations are verified for any 6U and Si? (such 

that 62.6 = 0 on l?l ) : 

(a) /, lz.63 - /, Udivz = - /,, Uo(s.6) (3) 

(b) I’, divz6U = $ /“” p6U 

2X=0 onr, 

By applying the Green’s theorem to (3-a) we have : 

By comparing (3-a) and (4), (2-a) can be obtained as Eu- 
ler’s equation with the “natural” boundary condition 6’ = 
Uo(z,y) on l?o. A similar result is immediate for (3-b) and 
(2-b). Hence we have the following weak formulation of the 

problem (2) : find a pair of functions (J!?, II) such that the re- 

lations (3) are oerified for any 6U and 63 (62.n’ = 0 on I’l). 

The solution (J?, V) is to be searched in functional spaces with 
the following properties 

I 
u2 < 00 (space L2 (II)) 

n 

I 
ll?12 < LX), Idiuz12 < 00 (Sobolev space H(div,R)) 

n I n 

and 2.6 = 0 on I’l (essential boundary condition). The test 
functions are to be taken in these spaces. 

4 
The solution (E, U) makes the following Lagrangian sta- 

tionary : 
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One recognizes the minimization problem of a “comple- 

mentary energy” under the constraint divE - p = 0, U being 
60 

nothing other but a Lagrange’s multiplicator. 

kcretization 
The domain R is covered with a triangular mesh. Inside 

each triangle U is approximated by a constant function Uh (the 

value at the barycentre), E’ is approximated by a polynomial 

vector function Zh : 

E,h = 111+/3x Eyh=a2+13y 

The used finite elements aze schematized on cg.1. The 
degrees of freedom related to E are the fluxes of E through 

the triangle sides. They are supported by nodes located at the 
middle of the sides. 

Jr? = dl.C(X,Y) + 42i2(X,Y) + &3&(X,Y) 

The i?;‘s are the basis polynomials such that : s,, i?,.n; = 

6,,. One notices that this interpolat,ion yields : 

diaih = f1 + 4% + 43 --~ 
s 

(where S is the area of the triangle). Therefore the Gauss’s 
law is verified on each ttiangle. In other words, if the exact 
solution is such that divE = 0, then the interpolated function 
verifies divgh = 0 too. This interpolation ensures the cont#i- 
nuity of the flux of E through the boundaries of the triangles. 
The later property is characterized by saying that this mixed 
finite element is conforming in H(div). This type of element 
was first introduced in different papers of Frayes De Veubcke. 
P.A. Raviart and J.M. Thomas 5,6 used these elements for 
solving second order equations in two dimensions (1977). We 
developed an axisymmetrical version for our program. 

On the whole domain R one has : 

Uh = &$M, 
i=l j=I 

N e : number of nodes located on the boundaries of the 
triangles 

N, : number of nodes located at the barycentres 
Mi is the basis function such that Afj = 1 on the triangle 

j, Mj = 0 elsewhere. 

Putting these expressions into the relations (3) and taking 
the basis polynomials as test functions one obtains a system 
of linear equations of the form : 

[c? :] [z] = [i] 
A penalization method leads to the factorization of a sym- 

metric, positive definite matrix. 

by 
!a) Interpolation of I? (conforming in If(d2r)) 

Fig. 1 : Discrettzation of the Poisson’s equation 

Coupling the FE:M to the pa~&icle motion 
This coupling is achieved through the following steps : 
(a) From the initial spatial distribution of the superpart,i- 

cles the density p is calculated by counting the superparticles 
in each triangle. By integrating with respect of equations (3) 
we obtain the RHS of the above matrix equation. 

(b) The field equations are solved by the described above 

method. The results are fluxes of 6. 

(c) From the calculated fluxes the field 2 acting on each 
particle is interpolated and the motion equations are solved for 
one time step (we used a Leap-frog-scheme). The iteration is 
continued with the new particle positions. 

First results 

Fig.(‘L.a) shows the mesh used for a LAL-Lasertron simu- 
lation. One can see advantages of the finite element methods in 
describing odd boundaries, locally mesh refining etc... F&.(2- 
b) shows the bunch behaviour in the accelerating space. One 
can observes the space charge phenomena and the focusing ef- 
fect of the Wehnelt. One notices some numerical fluctuations: 
due to a relatively coarse field interpolation from calculated 
fluxes. This later will be improved in the near future. 

(4 

(b) 

Fig. 2 : Behaviour of a single bunch in the accelerating region 
(initial radius : 5mm, Q = 1,9 nc, V = 330 kV). The 
bunch is represented every 50 ps. 
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3. Time Dependent Maxwell’s Equations 

For the Lasertron, an axisymmetrical TM mode is to-be 
considered, ffom symmetry ; the field components are : E = 
(E,,E,,O), B = (O,O,B,). In this case, the Maxwell’s equa- 
tions can be written : 

dB 
(u) curlJlz + -2 = 0 

at 
1 a.@ 

(b) c&B, - 2at = poj 

(c) divl? = ; 

E’ x ti = 0 on conducting walls 

It is easy to see that the condition 5-c is automatically 
satisfied if it is at the initial time t = 0 and if there is no 
charge creation. 

We can use mixed finite elements in order to find a p_air 
consisting of a scalar function B, and a vector function E = 

(E,,E,). A variational formulation is : Find a pair (E,B,) 

such that : 

E’ and S’E are to be taken in H(curl,il) with E’ x n’ = O> 

6k x n’ = 0 on the conducting boundaries. B, and 6B are to 
be taken in L2(fi). H(curl,fI) is defined in the same way as 
H(diw, fl), replacing div by curl. 

In our code we are developing an axisymmetrical version 
of such a mixed element, first introduced by Nedelec7, repre- 
sented on figure 3. This conforming in N(curI) element ensures 
the continuity of the “tangential” fluxes. Inside each triangle, 
E’ is interpolated by z:h : 

E,h=cq+ E,h=az+/h 

(a) Interpolation of E (conforming in H(curl)) (b) Interpolation of B, 

Fig. 3 : Discretiration of the time dependent Maxwell’s 
equations 

The degrees of freedom are the tangential Auxes. We have: 

curl$h = @41+ cE’& + (E’.& 
S 

Putting this relation into (5.a) we obtain the Faraday’s 
law on the triangle. Figure 4 shows the fields generated by a 
Gaussian bunch passing through a Lasertron output cavity at 
the speed of light. (An alternating explicit time-scheme was 
used). 

4. The Club MODULEF 

Our program developments are achieved using MODULEF 
facilities. 

Club MODULEF’ was created in 1974 to bring together 
French and foreign universities, as well as industrial compa- 
nies with the goal of designing and implementing a modular 
portable finite element program package. Exchange among 
members of the club is purely of a scientific (hence noncom- 
mercial) nature. Additional members are welcome. The re- 
quirements for joining are an interest in and need for finite 
element procedures and a desire to participate in the improve- 
ment and maintenance of a high quality package. For more 

information write to M. Bernadou at INRIA-Rocquencourt, 
B.P. 105, 78153 LE CHESNAY, France. 

5. Conclusion 

The mixed finite element method is very well suited for 
electrodynamic equations. It allows one to introduce the ad- 
vantages of finite element methods in the particle simulation 
programs : use of standard algorithms, easy implementation 
of the boundary conditions, versatile mesh generation, locally 
refining etc... 

/ 
I r I 

(b) 

(cl (4 

Fig. 4 : Fields generated by a Gaussian bunch (o= = 0.25~~1 ; 
or = O.lgcm) passing through an axisymmetrical 
cavity (lines rB, = cst). 
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