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Abstract 

We study the effect of multiple spin depolarization resonances 
on the spin of the particles with two snakes. We found that (I) 
When two resonances are well separated, the polarization can be 
rcstorcd in passing through these resonances provided thal the 
snake resonances arc avoided. (2) When Iwo resonances are over- 
lapping, the beam particles may be depolarized depending on the 
spacing between these two resonances. If the spacing hctween these 
two rcsonanccs is an odd number for two snakes. the beam particles 
may bc depolarized depending on the strength of the resonance. 
When the spacing becomes an even number. the spin can tolerate a 
much larger resonance strength without depolarization. Numerical 
simulations can bc shown to agree well with the analytic formula. 
(3) However the spin is susceplible to the combination of an 
intrinsic and an imperfection resonances even in the present of the 
snakes. Numerical simulation indicates that rhc spin can be restored 
after the resonances provided that imperfection strength is less than 
0.1 il’ intrmsic strength is flxcd at 0.74.5. 

Introduction 

Recently there are many important progresses in the spin 
physics.1-6’ Equally important, the polarized proton has been accel- 
erated up to 22 GEV/c in the AGS at BNL. At low energy, the 
resonances can be corrected by using (1) the orbit correctors or the 
harmonic corrector to cure the specific harmonic of the impcrfcc- 
tion resonances, and (2) resonance tune jump to fool the spin such 
that the resonance has ncvcr been cncountcrcd. At higher energy, 
these s;esonancc correction methods become inappropriate. The 
snake was invented IO maintain the polarization across the spin 
depolarization resonances. The snake flips the spin so that the 
precession frequency fi remains l/2 and never crosses any rcso- 
name. 

There are theoretical and numerical studies”@ on the effecl of 
the snakes in the resonance crossing. When there are overlapping 
resonances, the effect of the snakes on the spin is however 
unknown. In this paper, we .tddress the problems on the overlap- 
ping resonance for the snahe. Section 2 reviews briefly the result of 
the snake on the isolated resonance. Section 3 discusses the over- 
lapping resonances. The conclusion is given in section 4. 

Review of Results for a Single Rcsonancc6’ 

For an isolated resonance, the spin transfer matrix, which is 
defined to be the operator transforming the spinor wave function 
from one region of the accelerator to the other region, in passing 
through a pair of (I$,,$) snakes is given by, 

‘L (0, + 2rr.O,,) = -C(+&)+?b’ cos($,-~Kt3-Kx)C($,+KB0-K”) 

-2ab COS(~,-~-KB,-KK)S(Q,-~~K~) (1) 

where 

C(xj = Icosx+ia, sinx ; S(x) = io, cosx+ia, sin* 

a = arctan ((6/hjtaJr(hx/2)) ; p = ang(E*) 

b = l&l/a. sin L 
c 1 
2 ?a = (l-a’)ln ; 6 = K - yG 

(2) 

*Work performed under the auspices of the U S. Departmem of Energy 

(4) 

When the spin is tracked through n-times of these snake pairs, the 
spin transfer matrix can he expressed as the iterative equation, 

T(O,,+,) = M,,, ,.o,,) T(t),,) 

The final polariintion hecomes, (S) = 1 2 [I‘,-\’ with 

13) 

T,> = 21ab(-)” exp(i($,+a-Krr+tn-l)(Q, --I$-),) ,l, 

t 

sin n& sin I& 
c. sm 5. 

+ c, -. 
sin 4, 1 

with 

C, = cxp {*(I$~: -- p ~ KB, Kx + (n-l))t+} ; 

5, = rr(u,iK) 

We note here that the polariration of the particle should fall wlthin 
the envelope function of (S) = 1 - 8a’ b’ and the particles would 
bc depolarized if the following first order snake resonance condi- 
tion is satisfied, 

5, = X(U~ f K) = integer * rc (S) 

Besldcs the first order snake resonance, there cx~sts also 
higher order snake rcsonanccs. Figure 1 taken from ref. 6 shows the 
tracking result of the final spin after passing through a resonance as 
a function of the fractional part of resonance tune. These higher 
order snake resonances can be obtained easily by summing higher 
order terms in the iterative eq. (3) or cquivalcntly by concatenating 
the snake pair spin transfer matrices of eq. (1 ). c,g. the following 
third order concatenation 

*I% = ~(8, + 6x, B. + 4a) ~(0~ + 4n, B. + 2rcj ~(0” + 2, @J(6) 

and using eq. (6) as a unit for the iterative cq. (3). The condition for 
the m-th order snake resonances becomes 

F(IIIJ! _ 2m 

ti -N 
(Q~ T n<)rt = Integer n (1) 

> 
where N, is the number of pairs of snakes, and 1 = I, 2, ._, (3m-11. 
At resonance condition of eq. (7). the T,, component of the spin 
transfer matrix has an amplitude proportional to 

ab :2n-l) sir, ,,,~,,,,gfn~, 

after n-th traversal of the concatenated snakes. Thcrctorc the polar- 
ization of eq. (4) is easily depolariLcd if the condition of eq. (7j is 
satisfied. Table 1 lists the vertical tune of the machine correspond- 
ing to low order snake resonances. 

Snake Resonances at u. = l/2 for 2 Snakes 
Order Resonances Fractional Pan of K 

I U%H l/2 

3 3tu,%) l/2 516 

3(+3KJ 112 11/l) 13118 5/6 i7/18 

3(u$SK) l/2 17/30 19/30 7110 23/30 5/h 9110 29/30 
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Two Resonances 

In order to study the 
solve 

effectz?f overlapping resonances, we shall 
the differential equation numerically, i.e., 

ds’/de = s’ X -e (8) 

with-d = -tR + ry - t&, where K = -$I and < = -I-ir = &exp(-iK9) 
arc precession frequency and the resonance strength respectively. In 
the presence of two resonances, we have 

4 = i E, &‘fv . 
i=l 

Overlapping Intrinsic Resonances 

To study the effect of two intrinsic resonances, we assumed 
that the snake resonance for a single spin resonance is avoided, i.e. 
the fractional part of the tune is properly chosen. The intrinsic 
resonance appear at the precession frequency of $i = kP f zi,,, 
therefore the spacing between two resonances can be an integer or 
integer f20y. With two snakes, the maximum resonance strength of 
,745 sounds reasonable from the compilation4) of the resonance 
strength for various machines. Figures 2 and 3 show an example of 
the tracking calculation in comparison with a single resonance 
envelope function. We note that when the spacing between two 
resonances becomes an even number, the nodes, where the polariza- 
tion should be restored, coincide with each other for these two 
resonances. The spin is indeed restored easily after the two reso- 
nances. In this case, the spin can tolerate up to a resonance strength 
of 2. When the spacing between two resonances is an odd number, 
the nodes in the envelope function does not coincide with each 
other, the polarization is not restored after passing through these 
IWO resonances (see Fig. 3 for an illustration). Figure 4 shows the 
polarization after passing through two resonances as a function of 
spacing of these two resonances. When the spacing is not an 
integer, these two resonances may be kP * uy respectively. Thus 
our study here indicates that the linear response model works well 
for two intrinsic resonances. 

In general, the important intrinsic resonances are located at 
kP f uy. where P is the superperiodicity of the machine. In the 
large accelerator, the lattice structure is normally composed of arcs 
and insertions for interaction regions. The leading spin resonances 7) 

are located around K = kPM f un, where M is the number of 
bending FODO cell per supe:period, UB is the betatron tune of the 
bending section of the accelerator and k is the odd integers. These 
leading important spin depolarization resonances arc normally well- 
separated. As an example, the relativistic heavy ion collider pro- 
posed at Brookhaven National Laboratory has u = 28.826, P=3, 
M = 24 and uB = 23. We expect that the leading spin depolarizing 
resonances are separated at a minimum of AK = 2uB - 46. 
Therefore. we expect that the overlapping intrinsic resonances are 
not important in a realistic accelerator for the polarized proton 
acceleration. 

Intrinsic and Imperfect Overlapping Resonances 

Besides the leading intrinsic resonances, there exists also 
rmpcrfcctiou resonances, which is due essentially to misaligned 
quadrupolea and dipole rotation errors. These errors induce vertical 
closed orbit distortion. The leading imperfection resonances are 
normally distributed around the leading intrinsic resonance. Since 
the strength of imperfection resonance is proportioanl to the energy 
of the particle or y, the strength of these resonances are comparable 
or larger at higer energy. The closed orbit correction system can 
decrease the resonance strength by order of magnitudes. Similarly 
these intrinsic resonances can be corrcctrd by the harmonic correc- 
tors. It is, however, intcrcsting to understand what is the effect of 
overlapping intrinsic and imperfect resonances on the spin. 

Figure 5 shows the spin tracking result for E, = rz = 0.745 at 
K, = 5.826 and K, = 6. This is a rather practical situation before the 

orbit correction or harmonic correction scheme. The important 
imperfection resonances are nearest to intrinsic resonances. The 
relative strengths of these two types of resonance are also approxi- 
mately equal at high energy. Polarization is lost after passing 
through the overlapping intrinsic and imperfection resonances. Our 
study shows that the spin would not be depolarized only when 
Ea I; 0.1 if we keep &t = 0.745. On the other hand, two imperfection 
resonances do not have much effect on the spin. The linear response 
theory indicates that the linear driving term becomes zero after 
twice traversals of pair of snakes. Thus the imperfection resonance 
is usually less important when the snakes are present. The higher 
order depolarization driving force is however not zero. Because of 
the presence of nearby intrinsic resonances, there is no cancellation 
of the linear driving term for the imperfection resonance at the 
resonance position. This may induce higher order effect for the 
imperfection resonances. In order to maintain the spin in the pres- 
ence of the imperfection and intrinsic resonances, we study the 
accelerator with 4 snakes (0’, 4.5’. 90’, 135’). The spin can then 
tolerate up to Et IO.4 with E, = 0.745 (fixed). 

Conclusions 

We have shown that the agreement between the results of 
tracking and linear response theory is good even for the two 
resonances situation. When the spacing between two intrinsic reso- 
nances is an even number, the spin is less susceptible to the 
resonance strength. When the spacing is an odd number, the spin 
may be depolarized. 

The spin may be depolarized easily at a combination of the 
imperfectton and intrinsic resonances. It is therefore important to 
minimize the strength of imperfection resonances. 
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Fig. 1. The polarization of a spin particle passing through a 
resonance with strength E = I .93 is plotted as a funcIion 
of the fractional part of the resonance frequency. Several 
higher order resonances are observed. 

SPIN IN TWO SNAKES K: TWO RESONANCES 

Fig. 4. The final polarization passing through two resonances, 
as a function of the spacing between these two reso- 
nances. 
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2. spin tracing for El = ~z = 0.745. K, - K, = 2 is compared 
with the linear response theory (lines) as a function of 
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‘<PIN IN TWc? SNAKES & TWO RES0NANCE’L 
rp+- 7‘5 *L PH*-.3 T-z-4 Fig. 5. Same as that of Fig. 4 with the imperfection resonances 

at K, = 5.826 and the intrmsic at K, = 6. 
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Fig. 3. Same as that of Fig. 2, except K, - K, = 3. 
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