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A thermodynamic mechanism for bunch lengthening in elec- 
tron storage rings is described, where the synchrotron radiation 
plays the role of a heat bath. The steady state of the bunch 
is determined by the minimum of free energy, in which the po- 
tential energy of bunch displacement is a key part. The result is 
that bunch oscillation becomes thermodynamically favored when 
the parasitic losses have displaced the bunch by approximately 
one rms width from its zero current equilibrium location. This 
phenomenon is independent of the synchrotron tune shifts, and 
is unrelated to the mechanical instabilities predicted by the lin- 
earized Vlasov equation. This threshold scaling shows that ther- 
modynamic bunch lengthening dominates for short bunches, and 
a detailed calculation using the power-law impedance[l] shows 
that this is the probable mechanism for the bunch lengthening 
in SPEAR II. 

Introduction 

Bunch lengthening can be divided into classes depending on 
whether or not the particles are damped by synchrotron radia- 
tion, and whether or not the final state of the charge bunch is 
stationary. In the case of electron storage rings, the synchrotron 
radiation determines the bunch distribution. The radiation also 
reproduces the statistics of an ideal heat bath acting individually 
on the particles, and so encourages a thermodynamic analysis of 
the distribution. This paper is directed at the case where syn- 
chrotron radiation determines the particle distribution. 

Bunch lengthening effects are produced by the longitudinal 
wake field. In the absence of the wake field, and assuming a con- 
stant RF gradient, the equilibrium particle distribution is Gaus- 
sian in both displacement and momentum. The wake field then 
produces a distortion of the potential well, and hence a distortion 
of the longitudinal distribution. The momentum distribution re- 
mains unchanged as long as the bunch is in thermal equilibrium, 
but as the bunch charge is increased, a threshold is reached where 
the width of the momentum distribution begins to increase also. 

This phenomenon is thought to be due to instability of the 
equilibrium distribution, and is usually predicted by showing ex- 
ponentially increasing solutions of a linearized Vlasov equation. 
However, when this method is applied to SPEAR 11[2], the re- 
sulting prediction for the threshold current is substantially too 
high, compared with measurements of bunch length and mo- 
mentum widthll]. When the same wake field is used in a many 
particle simulation, however, the result is consistent with the 
measurements[S]. This suggests that a different mechanism is 
acting to produce the instability. Such a mechanismcan be found 
by considering bunch thermodynamics. 

Thermal Distributions 

The most probable distribution of an equilibrium system in 
contact with a heat bath is the one with the lowest free energy: 

F = PE - S = P(W)) + (log/@)) , (1) 

where I? is a symbol for all phase space coordinates and p is 

l Operated by the Universities Research Association, Inc. for the U. S. De- 
partment of Energy. 

the probability distribution for the system to be in the state 
F. ,0 is the inverse temperature, which is determined by the 
radiation statistics. The symbol (. . .) is the phase space average: 
(f(P)) = JdI’ p(J?)f(l?). S is the entropy of the charge bunch, 
and E is the average total energy of the charge bunch. 

The condition of minimum F is the same as the condition of 
maximum entropy for the combined system of charge distribution 
plus heat bath: The quantity DE is the entropy lost by the heat 
bath when energy E is transferred to the charge bunch, and so 
F is the negative of the total entropy, plus a constant. 

The condition of minimum F with the constraint that p re- 
main normalized gives the variational equation S(F+X(1))/6p = 
0, with the Boltzmann distribution as the solution: 

p(r) = 2-l e-PW) . (2) 

2 is a normalizing constant, and the Lagrange multiplier is given 
by X = log Z- 1. This is the only stationary p which corresponds 
to an extremum of F, and it always has the Gaussian momentum 
distribution: The energy E(r) has kinetic and potential parts, 
with the potential depending only on displacement: 

E(r)= $ + V(z) , (3) 

Hence, in the equilibrium case, the momentum distribution can 
always be factored out: 

p(r) = Z-l e -L3pa/2 ,-W(z) (4) 

Self-Consistent Distributions 

In the case of wake fields, the interaction between any two 
particles is insignificant, and only the collected field of the en- 
tire charge bunch need be considered. Then one may consider 
the phase space distribution for a single particle in the effective 
potential well of the wake field induced by the distribution itself. 
This gives a nonlinear equation for p(r), exactly as given by 
equations (2) and (3) except that now V is explicitly a function 
of p(r). In the case that p is independent of time, the Gaus- 
sian momentum distribution factors out of the equation, leaving 
a self-consistent equation for p(s) which should completely de- 
scribe the bunch shape due to potential-well distortion. However, 
the equation for p(F) also can admit time-dependent solutions, 
and these are the candidates for nonequilibrium bunch lengthen- 
ing. 

For the case of time dependent distributions, it is desirable to 
represent the single particle phase space in action-angle coordi- 
nates. The distribution function will then depend only on the 
action I, since the processes of filimentation and diffusion will 
make the density uniform along a phase space trajectory. This 
gives a distribution p(l) which is constant in action- angle co- 
ordinates, even though the distribution may be time dependent 
in Newtonian phase space. The time dependence of the system 
is carried in the coordinate transformation, and the content of 
solving the problem is in finding that transformation. 
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Thermodynamic Bunch Lengthening 

The bunch lengthening problem will be treated as linear os- 
cillation under the influence of the nonlinear wake field. This 
assumes constant RF gradient, and also that the synchrotron 
frequency is low enough so that all structure at the revolution 
frequency can be averaged out. 

The wake field is a nonconservative force. This is due to the 
fact that the wake field dissipates energy into higher modes of 
the accelerating cavities. The higher mode loss displaces the 
bunch from its nominal (low-current) equilibrium position, and 
this effect is key to producing thermodynamic instability. 

Since the charge bunch is in a quadratic confining potential, 
this displacement increases the potential energy of the system. 
This additional potential energy is what enables the thermal 
bunch lengthening: Normally, bunch oscillation is accompanied 
by an increase in the bunch energy, which makes oscillation ther- 
modynamically unfavorable. However, if the oscillation is ac- 
companied by lengthening of the bunch, the higher mode losses 
are reduced. This makes some of the potential energy of the 
bunch displacement available to compensate for the energy cost 
of bunch oscillation. 

The free energy (1) can now be rewritten to show the displace- 
ment potential explicitly: 

F=PE’ - S + +A& (5) 

where E’ is now the bunch energy calculated relative to the new 
(shifted) equilibrium particle trajectory. This equilibrium tra- 
jectory has been shifted by A.z from the zero-current trajectory 
by the higher mode losses, and the resulting potential energy 
appears in the third term. Note that the synchrotron radiation 
losses do not contribute to the problem since they do not depend 
on p, and hence the resulting potentials are constant. 

Numerical Solution 

The single particle longitudinal motion is determined by the 
Hamiltonian 

H = ; + ; + u(z,t) , 

where U(z, t) is the effective wake potential 

U(z,t) = 
/ 

ds’dp’ u(z - z’)p(z’,p’,t) ) (7) 

and IL is the indefinite integral of the wake field from a point 
charge: u(z) = - / ds f(z). The coordinates here are dimen- 
sionless, in units of the natural bunch length and momentum 
width. Then the Fourier transform of f(z) is related to the lon- 
gitudinal impedance by c&c! = QZ~(W), where a,o,V, and Q 
are the natural bunch length in seconds, time derivative of the 
RF field, and bunch charge. 

The nonlinear equation is solved for the distribution by iter- 
ation. The complete description of the distribution consists of 
the function p(l) and the coordinate transformation 1(z,p,t). 
To expedite the calculation, several approximations are used: 

The coordinate transformation is calculated with the first or- 
der perturbation approximation, and, in equation (2), E is re- 
placed by the first order action-angle Hamiltonian to represent p. 
These approximations are discussed in reference[4]. The itera- 

tion starts with a function p(Z) and a transformation I(Ic, Oo,t), 

where 10 and 00 are harmonic coordinates: zr = mcos00 
and p = asin&. For the first iteration, I = 10 and 

PV) = &I- 1 e-I. Then the potential U is calculated from equa- 
tion (7). U is represented as a Fourier series: 

U(Zo,Oo) = C U,,,(Zo) ei(meo-nwt) , 
m,n 

(8) 

the new action-angle coordinates are given by 

I=Zo + c & U,,,(Zo) ei(meo-nwt) , (9) (m,n)#o 
and the new p is given by 

p(Z) = 2-l e -H(r), H(Z) = I + Uo,o(Z) . (10) 

From this point, the iteration is continued until the distribution 
function becomes stationary. 

The frequency w is the collective oscillation frequency in units 
of the natural synchrotron frequency. Note that w is a free pa- 
rameter: It must be set before the iteration is done. In fact, 
time-dependent solutions for p are found for a band of frequen- 
cies w, in addition to the static equilibrium solution. Then the 
free energy is calculated from equation (5), and the distribution 
with the smallest value of F is taken as the correct one. The 
smallest bunch current where the free energy of an oscillating 
solution is lower than that of the equilibrium solution is taken as 
the threshold current for bunch lengthening. 

Results for SPEAR 

This calculation was performed for three sets of SPEAR op- 
erating conditions, using the power-law impedance function [l]: 

Re Zll = 
zo (w/we) for w < wo, 

ZO (w/wo)-~ for w > wo, 
(11) 

with Zc = 9 Kn, we = 8.16 ns-‘, and a = 0.68. The parameters 
of the different operating conditions are summarized in table 1: 

Table 1: Operating Conditions for SPEAR 

EO (GeV) ozc (ps) a,0 (MeV) Q (PV/s) wd (ms-‘) 
1.55 58.4 0.576 2.048 265 
2.21 83.4 1.17 2.904 265 
3.00 88.8 2.16 6.532 338 

The results of the thermodynamic calculation [4] are compared 
with a simulation using the same impedance(31 in figures 1-3. 
A summary of the bunch lengthening threshold currents it is 
presented in table 2. Included are the threshold currents from 
measurement [l], from simulation [3], from the linearized Vlasov 
equation [2], and from the thermodynamic theory [4]. 

Scaling Laws 

Dimensional analysis can be used to obtain a scaling law for 
bunch length versus current. Using (11) with w > wg, obtain 

AZ a i of-’ (12) 

Then, minimizing F gives 

uz a tb, Az a tb, (13) 

where b = l/(2 - e). This is the same scaling law that is used in 
reference[l]. Hence, this result does not conflict with the scal- 
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Figure 1: SPEAR Bunch Parameters at Eo = 1.55 GeV Figure 3: SPEAR Bunch Parameters at Eo = 3.00 GeV 
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ing data shown there. The difference between the Vlasov pre- 
dictions and the thermodynamic predictions presumably lies in 
the constant of proportionality and the behavior near threshold. 
The scaling argument shown above indicates that thermal bunch 
lengthening will become active when the higher mode losses have 
displaced the bunch by the order of one bunch length, and as the 
current increases, the bunch will lengthen so that the displace- 
ment remains tied to the bunch length. 

Conclusions 

The results above suggest a new mechanism for bunch length- 
ening in electron storage rings. This mechanism depends mainly 
on the higher mode losses, and their relative effect on the scale 
of the bunch length. It is insensitive to the detailed dynamics 
which produce the Vlasov instabilities which are usually called 
upon to explain bunch lengthening. 

The calculations for SPEAR II indicate that the thermal 
mechanism gives a good explanation of the observations in this 
machine, in contrast to mechanisms based on the Vlasov equa- 
tion. The general dimensional analysis predicts that the thermal 
mechanism should be the dominant form of bunch lengthening 
in very short bunch machines. 

Figure 2: SPEAR Bunch Parameters at Ec = 2.21 GeV 

Table 2: Summary of Threshold Currents 
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