
TEE BFFFECT OF ERRORS IN CJJARGED PARTICLE BEAMS -~---- 

David C. Carey 
Fermi National Accelerator Laboratory 

Batavia, Illinois 60510 

Summary 

Residual errors in a charged particle optical 
system determine how well the performance of the 
system conforms to the theory on which it is based. 
Mathematically possible optical modes can sometimes be 
eliminated as requiring precisions not attainable. 
Other plans may require introduction of means of 
correction for the occurrence of various errors. 

Error types include misalignments, magnet 
fabrication precision limitations, and magnet current 
regulation errors. A thorough analysis of a beam 
optical system requires computer simulation of all 
these effects. A unified scheme for the simulation of 
errors and their correction will be discussed. 

Introduction 

By error we mean any aspect of the beam line 
which causes a deviation from the first-order optical 
design. The concept of error then includes second- 
and higher-order aberrations as well as magnet 
misalignments! magnetic field regulation errors, and 
magnet fabrication errors. We do not consider 
bremsstrahlung, space charge or scattering either in 
air or in passage through any material placed in the 
beam line. These are discusfed briefly in The 
of Charged Particle Beams - by the aut& o!%% 
paper. Furtherreferences may be found in the 
bibliography to that book. 

The contention of this paper is that the error 
types under consideration may all be incorporated into 
the multivariable Taylor series expansion of charged 
particle optics. The first-order expansion is 
adequate to represent many effects, including those of 
higher-aberrations. The effect of an error is often 
to displace the reference trajectory. The effect of a 
single element on the coordinates of an arbitrary 
trajectory can be expressed as 

x1 = Xls + Rx, + Txoxo + uxoxoxo 

where X is a six-component vector given by 

This vector is measured with respect to an assumed 
reference trajectory. The transverse coordinate x is 
in the hori;;i!;l ,!,";,ntbiviiane and y is in the 
vertical. X’ and y' are with 
respect to distance along the reference trajectory. 
The coordinate E represents the longitudinal 
separation between an arbitrary particle and the 
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reference particle. Finally, there is the fractional 
momentum deviation d from the reference particle. The 
vector X 
the elem%t. 

is the trajectory displacement caused by 
The matrices R, T, and U are 

respectively the first, second, and third-order 
transfer matrices. The order of the expansion will 
depend on the particular application as we shall see 
below. 

Local Description of Various Errors -~- 

1) Misalignments 

When a beam line magnet is misaligned the 
reference trajectory may be broken at either the 
entrance or exit face of the magnet. In addition the 
reference coordinate system at either magnet face may 
be rotated with respect to2 its aligned orientation. 
In previous publications it has been customary to 
express the trajectory coordinates at the magnet face 
in terms of those in the aligned system by 

Xi = SX - D (3) 

Here S is six-by-six matrix and D is the 
displacement of the magnet face in the six-dimensional 
space of the trajectory coordinates, given in 
equation (2). This means that the downstream 
transformation is done in the upstream direction. 
However equation (3) can be easily solved for X to 
give the transformation in the forward direction. 

Because the six-dimensional space of trajectory 
coordinates is not the same as the six-dimensional 
"phase space" of positions and velocities, 
equation (3) can have higher-order contributions. 
However, since misalignments are errors, the 
magnitudes of the displacements and rotations are 
usually sufficiently small to allow such higher order 
terms to be ignored. 

2) Magnet Regulation Errors 

The equations of motion and the transfer matrix 
in a mis-set bending ~ag;:t,i';:: b;e.; d;;;:tb~~,~; 
greater detail elsewhere. 
equations of mtion are given by 

x" + [l-n+rs(2-n)]h2x = -rsh + h(l+rs)6 (44 

y" + n(l+rs)h2y = 0 (4b) 

Here n is the usual magnetic field index, h the 
curvature of the reference trajectory, and r the 
fractional mis-setting of the magnetic field. ff the 
magnet is mis-set, the reference particle does not 
follow the reference trajectory. Hence the radii of 
curvature of the reference trajectory and the 
trajectory of the reference particle are different. 
The deviation of the reference particle from the 
reference trajectory is due to the first term on the 
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right side of equation (4a). When the equations of 
motion are solved, the effect of this term will be to 
contribute to the term X 

1s 
in equation (1). The 

focusing strength in both p anes is also affected. 

3) Skew Components in the Magnetic Field 

This subject has also been treated in more detail 
elsewhere. Suffice it to say that a solution of 
Maxwell's equations in two dimensions produces two 
non-singular solutions in each order. Yidplane 
symmetry reduces this to one which can then be 
specified in terms of the x behavior of B in the 
magnetic midplane (y=O). If rn:z:ne 
the horizontal magnetic 

symmetrJ Bholds 
component x 1s 

identically zero in the magnetic midplane. 

Magnet fabrication errors or deliberate 
introduction of skew components of the field can 
produce non-zero values of B ' the magnetic 
midplane. The midplane expansioz o?Bx becomes 

Bx(x,O,t) = Bo(vR - nshx + Psh2x2 + . ..) (5) 

The first-order equations of motion now become 

xz + (1-n)h2x = h2(vr-ns)y + hb W 

y" + nh'y = h2(2vR-ns)x + vRh - vRh6 (6b) 

The skew dipole field, being an error, will cause the 
reference particle to deviate from the reference 
trajectory. The focusing also mixes the two 
transverse planes as both equations contain both 
transverse coordinates. 

4) Dispersion and Chromatic Aberration 

A trajectory which initially concides with the 
reference trajectory but does not have the reference 
momentum will depart from the reference trajectory 
upon passage through a bending magnet. The magnitude 
of this departure is the dispersion. The variation of 
the focusing strength with momentum is chromatic 
aberration. 

An alternate approach to representing a beam line 
is not to include the momentum deviation 6 in the 
Taylor series expansion of the transformation. Rather 
we can leave the 6 dependence unexpanded and consider 
the dispersion to be a new momentum-dependent 
reference trajectory. The first-order equations of 
motion in a bending magnet are then 

X’ + &(1-6-0)x = 4 1+ 

2 
Y” +$j y=o (7b) 

These equations are valid to all orders in 
momentum deviation 6, and first order in the 
transverse geometric variables x, x', y, and y'. 
However, their solution is not valid to all orders 
in6 as additional terms will arise from the, 
interaction of higher-order geometric terms with the' 
dispersion. Correction of chromatic aberration may be 
accomplished by interaction of the dispersion with 
sextupole components of the magnetic field. 

Accumulated Effect of Errors -- 

,1) Redefined Reference Trajectory 

The treatment of the various effects described 
above can be unified by defining a new reference 
trajectory as the path followed by a reference 
particle in the presence of the errors. In the case 
of chromatic aberration, the error represented would 
consist of an initial momentum deviation of the 
particle. This redefined reference trajectory could 
be followed through the magnetic system by using 
equation (1) on an element-by-element basis. The 
transformation for the individual elements could be 
made to any desired order. 

The Taylor series expansion can then be made 
around this new reference trajectory. We start with 
equation (1) for the transformation of an arbitrary 
trajectory. If we reexpress the coordinates relative 
to the transformed original reference trajectory XI, 
and denote the difference by AX, then we have 

X lr + AX 
1 = x ls + R(Xor+AXo) + Wor+AXo) (Xor+AXo) 

+ U(Xor+AXo)(X or +AXo) (Xor+bXo) (8) 

Subtracting the equation for the reference trajectory, 
we derive 

AX1 = RAXo + T(2XorAX 
0 

+ AXoAXo) (9) 

+ IJ(3XorXorAXo + 3XoAXoAXo + AXoAXoAXo) 

= (R + 2TXor + 3~orXor) AX 0 

+ (T + 3UXor)AXoAXo + UAXoAXoAXo 

From equation (3), we can define new first- and 
second-order transfer matrices by 

R* = R + 2TXor + 3UX X or or (10) 

T* = T + 3UX or 

These redefined matrices for each element can then be 
accumulated to produce transfer matrices for the 
entire magnetic optical system. The transformation of 
a particle trajectory through the system can now be 
represented by a transformation similar in appearance 
to equation (1). 

X1 = Xlr + R(t)Xo + T(t)XoXo + U(t)XoXoXo (11) 

Here the matrices R(t), T(t), and U(t) are calculated 
as products of the matrices R*, T+, and U, as defined 
in equation (4). 

Note that in equation (lOa) the redefined 
first-order transfer matrix contains contributions of 
second and third order. These contribuiions will not 
be'etruncated when the individual R matrices are 
multiplied to obtain the total first-order transfer 
matrix R(t). Instead the ostensible first-order 
matrix element may contain significant contributions 
from second, third, and many orders higher than are 
included in the transformations of equation (10). 
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2) Example--Chromatic Aberration 

We shall use the approach described above to 
analyze the chromatic dependence of a FODO, a straight 
system made entirely of quadrupoles. 
the system consists of 

A single cell of 
a focusing and a defocusing 

quadrupole as shown in figure 1. A cell begins at the 
center of a focusing quadrupole, so the cell has a 
half-length quadrupole at each end. 

This cell is repeated 160 times to make the whole 
system. The phase advance per cell is 90°, so the 
system shows 79 intermediate foci, plus a final focus 
in both transverse planes. 

We consider now the sinelike trajectory, that ray 
which crosses the reference trajectory with unit slope 
at the beginning of the system, as a function of 
momentum. Figure (2) shows the momentum dependence of 
the magnitude of this ray at the end of the system. 
When 6=0, s (6) is zero giving an on-momentum focus. 
As the momentum is increased, s (6) moves off axis, 
showing the effect of chromatfc aberration. Each of 
the intermadiate foci moves downstream. Finally the 
79th intermediate focus reaches the end of the system 
and s (6) is once again zero. By coincidence in the 
syste& under consideration this happens almost exactly 
at 6=1. Further increase of the momentum has the same 
effect with the 78th intermediate focus reaching the 
end when 6~2. The curve showing this behavior is 
labelled "exact' in figure 2. 

In traditional beam optics, the 6 dependence is 
included in the Taylor series expansion. The momentum 
dependence of s 
terms (x1x:6) afd 

is repr$sented by the higher-order 
(x1x:6 ). The value of ~~(6) is then 

Conclusions 

s,(6) = ~~(0) + (xix;)6 + (xl~;6~)6~ 

The second and third-order approximations to s (6) are 
shown in figure (2). The third-order term dges not 
make a visible effect. This is to be expestetn;in;z 
the third-order matrix element multiplies 6 
therefore an even function of 6. From the figure we 
can see that the exact curve is much closer to being 
an odd function of 6. These curves, in this case, 
appear to he good approximations only out to 6z.2. For 
longer systems the range of 6 would be even smaller. 

The alternative procedure described earlier is to 
expand about a new reference trajectory. In this case 
the new reference trajectory is spatially identical to 
the old. It is the reference momentum alone which is 
different. Using equations (10) we can define a new 
first-order transfer matrix on an element-by-element 
basis. By multiplying together these matrices, we can 
produce a total momentum-dependent transfer matrix for 
the system. The results of doing this are also shown 
' figure (2). 
iifore 

(The abbreviation SBA means shift 
accumulating.) Now the third order 

approximation is indistinguishable from the exact 

We have described a hybrid method for 
representing the effects of a beam line on the 
trajectory of a charged particle. Certain of the 
trajectory coordinates are exoanded to a certain order 
in a Taylor series representation. The effect of 
others may be retained to a much higher order. A 
shifted reference trajectory is used to make a new 
expansion. This shift can be caused by errors in the 
system, deliberate corrections for 
chromatic dependence8 in 

errors, or 
the beam line. The 

procedures described are 
computer program TRANSPORT. 

5incorporated into the 
They are invoked 

automatically whenever a beam centroid shift occurs, 
either explicitly or due to errors in the system. The 
methods described can bring considerable additional 
power to the analysis of many charged particle optics 
problems and can complement the strict Taylor series 
approach. 

*Operated by Universities Research Association 
Inc. under contract with the United States Department 
of Energy. 
1) David C. Carey, 
Beams, Harwood Academi-ub is ers, New Yor 

The iptihcs of Charg;d y;$icle 

m.L. Brown, F. Rothacker, D.C. Carey, Ch. Iselin, 
Nuclear Instruments and Methods 141, 393- (1977). . 
3) D.C. Carey, Second Conference on Charged Particle 
Optics, Albuquerque, 1986. 
4) D.C. Carey, Particle 
Vancouver, B.C., 1965. 

Accelerator Conference, 

5) K. L. Brown, F. Rothacker, 
Ch. Iselin, TRANSPORT, 

D. C. Carey, and 
A Computer Program for 

Designing Charged Particle Beam Transport Systems, 
SLAC Report No. 91, Fermilab Report 
CERN 80-04. 

No. 91, 

-1 J-(-t- 
Figure 1. 

curve. 

\ 

Figure 2. 

(ALSO 3rd ORDER SEA) 

1148 

PAC 1987


