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Abstract

The successive linearization method has been developed to deter-
mine the dynamic aperture of storage rings. In the present paper the
method is applied to a simple system that can also be solved exactly.
It turns out that the dynamic aperture obtained from the successive
linearization method disagrees with the exact result. This indicates that
the method should be used with some caution.

1. Introduction

One of the most important quantities in beam dynamics of a storage
ring is the dynamic aperture. It is defined as the boundary to that area
of phase space in which particles remain stable for a given time and
do not get lost.

To de}ermine the dynamic aperture one can apply particle tracking
methods '. However, 1o calculate the actual trajectories of protons and
heavier particles over sufficiently many turns is often beyond the scope
of present computers. Therefore the stability of particle trajectories
can only be predicted for short times.

A qyjte different approach is taken by the successive linearization
method®. Here it is assumed that, even for iong times, the actuai soi-
utions of the particle trajectories can be sufficiently well approximated
by solutions obtained from a successive linearization of the underlying
differential equation. With this and some further assumptions criteria
are developed which allow one to directly discern between stable and
unstable trajectories and to calculate the dynamic aperture.

Of course the question arises how realistic these criteria are in
view of the assumptions involved. It is therefore imporiant to compare
the successive linearization method with an exact solution as will be
done in this paper. The comparison is carried through for the differen-
tial equation

d2/ds?

jith A Avart calidian oo ill hAa

x + kx~rn-x2/2 =0
with

d/ds k = d/dsm =m0
Details are given in section 2. It will turn out that the successive
linearization method leads to an incorrect result for the dynamic aper-
ture even if it is driven to arbitrarily high order. Conseaguently some

care should be taken when determining the dynamic aperture by the
successive linearization method

2. Calculations and Results

The successive linearization method has been applied to equations
of the type2

d2/ds? x + Kex-ma+x22 =0 "
Here x is the displacement, k - x describes the qudrupole focussing
whereas m « x“/2 is due to sextupole contributions and is assumed to
be small. Eq. {1) can be obtained from the hamiltonian

H=p22 + K2-x2-m.x¥6 @

An exact solution is possible if k and m do not depend on s and only
this case will be investigated in the following. Then

=p =3 (26-kex? + mx331/2
or

£ dx(2E - kx? + mxdy V2 = @

E is determined from the initial conditions Xq and Pl
E = po2/2 + k2 x,2 - mx Y6 (5)
E<E.=2.-k¥3m?

where Ec is the energy below which x is bounded.

Applying next the successive linearization method to eq. (1) the first
linearization consists in neglecting the term m « x</2 completely which
leads to

a?xigs? + kxl? =0
with the sotution
(@) = b cos (Jks + a)
b and a are determined by the initial conditions. Denoting the true dy-

namic aperture by A and that obtained from the successive
linearization method in nth order by Anone finds

Ay = @ (6)

In second order the deviations ”(o) due to the term m . x2/2 are taken
into account linearly. This leads to the equation {only the homogeneous
equation needs to be discussed)

d%u®/ds? + [k+mb cos{\kas + o)l = 0 7
With the transformations

z = (Jks + a)2
one obtains

d2u(®sdz2 + [4 + 4 mb/k « cos (22)] - @ = 0 8

This is Mathieu’s equation ha§ing non bounded soiutions in the
present case for any not too big m*. Thus in second order

A2 =0 {9)

in n'" order one obtains n-1 corrections u to () and the dynamic
aperiure must not contain area of phase space where one or several
corrections u are unbounded. As a consequence A;, 4 must be con-
tained in A or

Aj 44 CA (10)
Here it amounts to (cf. eq. (7))

A =0 I = 2 (11)

3. Conclusion

Applying the successive linearization method to eq. {1) with
konstant k and m |eads to the following prediction for the dynamic ap-
erture:

It is infinite if one stops after the first linearization it is zero in any fur-
ther linearization step. This is in disagreement with the exact result
where the dynamic aperture is finite and determined by eq. (5). This
shows that one has to be cautious when applying the successive
linearization method to estimate the dynamic aperture in storage rings.
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