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Abstract 

The successive linearizatron method has been developed to deter- 
mine the dynamrc aperture of storage rings. In the present paper the 
method IS applied to a simple system that can also be solved exactly. 
It turns out that the dynamrc aperture obtained from the successrve 
Itnearrzatron method disagrees with the exact result This indicates that 
the method should be used with some caution 

1. Introduction 

One of the most important quantitres in beam dynamics of a storage 
rrng IS the dynamic aperture. It is defined as the boundary to that area 
of phase space In which par-rcles remarn stable for a given time and 
do not get lost. 

To dejermine the dynamic aperture one can apply particle tracking 
methods However, to calculate the actual trajectories of protons and 
heavter particles over sufficrently many turns IS often beyond the scope 
of present computers Therefore the stability of partrcle tra)ectorres 
can only be predrcted for short times 

A q te drfferent approach is taken by the successtve linearczation 
Y method Here It is assumed that, even for long times. the actual sol- 

uhons of the particle trajectortes can be sufficiently well approximated 
by solutions obtained from a successive linearlzatron of the underlying 
differential equation Wrth this and some further assumptrons criteria 
are developed whrch allow one to drrectly discern between stable and 
unstable trafectorres and to calculate the dynamtc aperture 

Of course the question arises how realrstrc these criteria are in 
view of the assumptrons Involved. It IS therefore Important to compare 
the successrve linearization method wrth an exact solution as will be 
done In thus paper The comparrson is carried through for the dtfferen- 
tial equation 

d2/ds2 x + k x -m . x2/2 = 0 

wrth 

dlds k = d/ds m =m 0 

Details are given In section 2. It will turn out that the successive 
lrnearlzatron method leads to an incorrect result for the dynamic aper- 
ture even if it is driven to arbitrarily high order Consequently some 
care should be taken when determinrng the dynamic aperture by the 
successrve Ilneartzatcon method 

2. Calculations and Results 

The successive Imearrzation method has been applred to equatrons 
of the type’ 

d2/ds2 x + k .x - m . x2/2 = 0 (1) 

Here x is the displacement, k + x describes the qudrupole focussing 
whereas m * x2/2 IS due to sextupole contrrbutcons and is assumed to 
be small. Eq (1) can be obtained from the hamrltonian 

H = p2/2 + k/2. x2 - m . x3/6 (2) 

An exact SOlution IS possible If k and m do not depend on s and only 
thrs case ~111 be Investigated In the following. Then 

x = p = i (2E - k + x2 + m x3/3)“2 

or 

zt dx(2E - kx2 t mx3/3)-1’2 = s (3) 

(5) 

E is determined from the indral condmons xo and p, 

E = po2/2 + k/2. xo2 - m xo316 

EiEc=2.k,(3m2) 3, 

where EC IS the energy below which x IS bounded 

Applying next the successive hneartzahon method to eq (I) the first 
linearization consists m neglecting the term m + x2/2 completely which 
leads to 

d2x(3)/ds2 + k x(O) = 0 

with the soiutron 

x(O) == b cos (,!k s + II) 

b and u are determined by the mitral condttrons Denoting the true dy- 
namtc aperture by A and that obtaIned from the successive 
lrnearization method In nth order by A,one finds 

A, = ~0 (61 

In second order the deviations u(O) due to the term rn. x2/2 are taken 
into account linearly This leads to the equation (only the homogeneous 
equatron needs to be drscussed) 

d2u(‘)/ds2 f [k+mb cosjjka s + a)]~(‘) = 0 (7) 

Wrth the transformatrons 

z = (q’k s + a)/2 

one obtains 

d2u(‘)/dz2 f [ 4 + 4 mbik . cos (2z)]. u(O) = 0 (8) 

This is Mathieu’s equation hayrng non bounded sotuhons In the 
present case for any not too big m Thus in second order 

A2 = 0 (9) 

In nth order one obtarns n-l correctrons u to x(O) and the dynamrc 
aperture must not contarn area of phase space where one or several 
corrections u are unbounded As a consequence Ai+, must be con- 
tarned in A, or 

Ai+l CAr (10) 

Here It amounts to (cf eq. (7)) 

Ai = 0 122 (11) 

3. Conclusron 

Applying the successive Ilnearrzatron method to eq. (1) with 
konstant k and m leads to the following predictton for the dynamcc ap- 
erture 

It IS lnfrnrte if one stops after the first hnearrratron It IS zero in any fur- 
ther linearization step. Thus IS in drsagreement wtth the exact result 
where the dynamic aperture IS finite and determlned by eq (5) This 
shows that one has to be cautrous when applyrng the successive 
lcnearlzation method to estimate the dynamic aperture in storage rings 
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