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Abstract 

A simple algorithm is presented which transforms 
two closed orbits observed at beam position monitors 
around a ring into p and 0 values at the monitors. The 
procedure assumes the prior use of a second algorithm to 
measure PC and Qc at the two dipole correctors used to 
excite the perturbed closed orbits. Test results from the 
program BETA, written to measure p around the 
Tevatron, are shown. The sensitivities of the measurement 
to monitor digitisation and to yuadrupole errors between 
the reference correctors are estimated. 

Introduction 

If PC and $c are the betatron function and phase of 
a dipole corrector excited to give an angular kick of Xc’, 
then the closed orbit perturbation X at a beam position 
monitor (BPM) with values p and @ is 

0.5 x=x’- 
’ sin(Q) J- P PC cod WC- 41 - xQ) (1) 

The conventional ‘cusp’ beta measurement technique 
assumes that the BPM is close enough to the corrector to 
declare that their p, $ values are identical, leaving only 

one unknown, p, on the right hand side. Disadvantages of 
this method are that one closed orbit observation is needed 
to measure p at only one BPM, and that the BPM may be 
distant from the corrector. (In the realistic model of the 
Tevatron used below, each corrector is 2.5 metres away 
from a RPM, in a FODO structure of 30 metre half cell 
length.) 

The crux of the method described here is that two 
closed orbit measurements, made after perturbing two 
correctors wirh known [& and 6, values, are sufficient to 
determine p and Q at any BPhl. Two closed orbit 
measurements are sufficient to measure the bctatron 
function and phase at every BPM in the lattice. 

Suppose that a BPM is beyond the two reference 
correct.ors 

9 cl < %2 < Q 
(2) 
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and define the angles 01 and 82 as 

0, = xQ + @c, - 4d , e2 = 9, - 4c2 - XQ (3) 

where $d is the design phase of the monitor. Substituting 
2 and 3 into 1, and resealing, gives two simultaneous 
equations in the two unknowns p and S$, 

y = 2 sin(riQ 
I- f 

X cl 41 Al- 

Xl = 4ji coq f &q) 

(4) 

y 2 q 2 sin(aQ) x* = 6 cos((j2 + sip) 

XC2 PC2 
J- 

where 641 is the shift of the BPM from its design phase. 

After one more transformation of variables, 

y = (y1+y2)'2a i 
e = (c11f8’)i2 
+ A 

(5) 

y = cy1-y2)'2. - e = Y Y2 - 

equations 4 become 

Y + = 4 cod+ cos(O + 6L$) 

Y =& 
(6) 

sin0 cos( I3 + 64) - + - 

which are trivial to solve. 
Notice that 0, = ( ocl - oc2) / 2 is constant for 

all BPMs, while 8- varies. The solution of 6 becomes 
numerically sensitive, in practice, if the absolute value of 
sine+ or co&+ is too small -- less than 0.1. say. A 
reference corrector pair should be chosen which avoids 
this condition. ( For the sake of clarity, only those BPMs 
which are heyond the correctors in phase a-e being 
explicitly considered here. Nonetheless. the angles 0 1 and 
82 may also be defined for I3PMs before and between the 
correctors, and all the results and comments except foI 
equation 3 are true in general.) 

Determining the Corrector Betas and Phases 

The solution above depends on knowing the beta 
llC5 (‘H2.%7-‘4X7 (KM-I 105 4 I .1H) c If:& 
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functions at the two correctors, and the phase advance 
between them. These three values are determined by 
creating an iterative loop which generates the values as a 
function of the values themselves, and then by finding a 
self-consistent solution. 

The first step in this loop is to calculate p and C$ at 
the two ‘anchor’ BPMs closest to the correctors by using 
the method described above. Second, the values of the 
Twiss parameter a are calculated at the anchors by 
solving the Twiss parameter transformation equation 

a a 
II [I P = T p 
Y anchor 2 Y anchor 1 

(7) 

The matrix T is a function of M, the 2 by 2 design matrix 
describing betatron motion between the anchors, 

7’= 
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92 
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(8) 

EC: third and final sicp in the loop is to propagate p and C, 
i‘!om :l?e anchors to ttc associated correctors, using the 
appriy7ri:ifi: ‘I’ ni;llriws, 

TilLi algorithm aiso exhibits a numerical sensitivity 
ir‘ thtx \t’mn;; corrector pair is chos.:n -- pairs with the 
absoli~tc value of cos($,-, - Qci - 7Q) close to 1 should be 
avoitlci!. ‘I’hiq sensitivity arises because iC the argument of 
the cosine is NE - E. then equation 1 is also satisfied by a 
pi1t.1~~ atlv;tr~c~ ~C~WCCII corrcctorq wkicli i:< 2~ larger than 
thr: tr’uc‘ \,al::c. For example, the Tevatron is modeled for 
tcs: p~rp~,::s as a lattice of 103 FQDO cells, each with a 
phN ' :\riiw~c of appmiriw!ely 69 degrees, for ;t net to:si 
tll!~ of iO.400 (including perturbations). In this case the 
nrgulncilt i\ -19~ - 0.073 for correctors separuted by WC 
ccl!, hll ii --19x + 1 .110 for correctors two cells apart. 
l’he latlcr con:‘iguratiolj is used in the results which follow. 

Test Results using a Model Tevatron Lattice --- j 

tiI<TA is a FORTRAN-77 program incorporating 
these algorithm< which will sooil bc used fc,: beta 
mea<;!~:~mcnt~; in the Tevatron prot:>n collider at Fermilab. 
‘1%~ p~~~r:::i~ ~~~m~:r’litcs isput dritcl miw.ising a lattice of c 
tl$v lC!.!i; mn3 CT:'!':; Wll en c,per:ad it! a stand alone test 
mo&. -171is mode is used for debugging and for estimating 
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Figure 1 The effect of a quadrupole perturbation of 
variable strength on the maximum and minimum fl, 
and on the sum of l/p, in the model Tevatron lattice. 

the expected measurement resolution. 
Figure 1 shows the effect of a single quadrupole 

perturbation, with a strength p times that of a regular 
quadrupole, at a defocussing location in the model 
Tevatron lattice. BETA returns the correct p and Cp 
values at the locations of all (ideal) BPMs to machine 
precision over the range of perturbation strengths shown, 
even when fimax is more than 3 times the design value. 

The dashed line shows that the sum of l/p at all the 
BPMs remains within 1.4% of iLs design value even with 
the strongest perturbatior?s, reflecting the fact that the 
azimuthal integral of l/p, the net tune, is held constant. 
This means that the corrector strengths can be calibrated 
empirically, since if the corrector angles Xci’ and Xc,” 
in equation 4 have a systematic error, then ihe p values 
found by the solution of 6 and the measured sum of l/p 
will also have systematic shifts. 

Figure 2 shows how the resolution of the beta 
measurement varies as a function of the size of the least 
signific:zr;t ?%t jL,SB) in the analog to digital conversion of 
the arc BPM signals. The two anchor BPMs are still 
assumed to be ideal. Tn the Tevatron the nominal LSB size 
is 140 microns, corresponding to an expected root mean 
square error of about 1.5% This resolution is almos: 
independent of the actual beta errors which are present 
(;,=I ), ‘out is inversely proportional to the amplitude of the 
induced orbit distortion. The perturbed closed orbit has 8 
millimetre peaks for the data shown, corresponding to the 
dilfcrence between +4 miiiimetre orbits which are 
pr;)b:lb!y ii,;\~siklc ir; the Tevatron. 

‘I’hc 5ziid line (S for symmetric) has the 
pertur’oation placed diametrically across the lattice from 
the middle of the two reference correctors. The dashed 
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Figure 2 The sensitivity of the root mean square p 
measurement resolution to the least significant bit size 
in the arc beam position monitor signal digitisation. 
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Figure 3 The sensitivity of the rms p resolution to 

the least significant bit size in the digitisation of the 
anchor beam position monitor signals. 

line (A for asymmetric) has the perturbation one cell to the 
side of the symmetric position. Pseudo-random statistics 
with 103 samples at one BPM per cell account for the 
difference between solid and dashed lines. 

Figure 3 shows how the measurement resolution 
depends on the LSB size of the two anchor BPMs, under 
the same assumed conditions, but with ideal arc BPMs. 
The data are more noisy because errors are introduced 
through digitisation at only 2 BPMs, not 103 as above. If 
the electronics of the two anchor BPMs are modified to 
have an LSB size of 70 microns, then the expected rms 
resolution contribution due to this effect is about 0.6% . 
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Figure 4 The effect of quadrupole errors between the 
reference correctors on the measurement resolution. 

Figure 4 shows the effect of quadrupole 
perturbations between, rather than outside, the two 
correctors. This causes an error in the measured corrector 
betas and phases, since the T and M matrices used in 
equations 7 and 8 are no longer correct. An unrealistically 
strong perturbation of strength ~~0.5 must be introduced 
to cause additional 1% resolution errors, showing that this 
effect is not important. The errors scale roughly in 
proportion to the distance between the anchor BPMs and 
their associated correctors. 

Conclusions 

If the arc BPM signals in the Tevatron are digitised 
with a least significant bit size of 140 microns, if the 
anchor BPMs have an LSB size of 70 microns, and if Z!Z 4 
millimetre orbit distortions are possible, then the expected 
resolution in measuring betas around the Tevatron is about 
1.6 % . If instead the anchor BPMs have the nominal LSB 
size of 140 microns, the expected resolution is increased to 
about 2.3 % . If orbit distortions of only h 2 millimetres 
are possible, then the expected resolutions are doubled, to 
3.2 % and 4.6 %, respectively. 
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