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Abstract

The space charge limiting current problem is
investigated for a magnetized particle beam
propagating in a cylindrical drift tube and in
presence of a waveguide mode. It is shown that with
a proper choice of a waveguide mode, the Timiting
current can be greatly enhanced due to ponderomotive
effects. Physically, this is accompiished by using
tne ponderomotive energy to reduce the potential
depression due to the beam's self space charge
field. Formulas for the limiting current as a
function of beam energy and wavegquide r.f, field for
solid and hollow beams are derived. It is found
from these formulas that, in appropriate parameter
reagimes, the space charge limiting current, say, of
a 250kV heam can be anhanrad hy 70%
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I. Introduction

Lately, there has been a steady increase in
axperiments involving the propagation of high
current particle beams in drift tubes. Typically,
these tubes are evacuated cylindrical grounded
tubes, where an externally longitudinal magnetic
field can be applied. This situation can be found,
for 1nitance, in eﬁperiments on free-electron 3
lasers®, gyrotrons©, collective~-ion acceleration-”,
etc, However, a large mnumber of theoretical
studies and experiments have shown that the primary
limitation for the efficient transport of high
current beams through a drift tube is the
electrostatic potential depression due to the beam's
self space charge field. When the beam current
exceeds the limiting current of the specific drift
tube, the unneutralized beam stops propagating.
Hence, it is important in many applications to be
able to thwart the limitation imposed by the space
charge build up in drift tubes.

In this work we present a physical mechanism
which allows us to easily obtain a 70% increase in
the limiting current of, say a 250 kV relativistic
electron beam. It consists of making use of
negative ponderomotive energy of some appropriate
cavity mode to baTance the beam space charge
electrostatic energy. Here we choose the TEll mode,
since the maximum field occurs at the center of the
beam, for a solid beam, and the TEOl mode, since the
maximum field can be set at the inner beam radius,
for a hollow beam. These are the beam radial
position where the electrostatic depression is
maximum. The ponderomotive energy associated with
gach one of these modes is negative

if ]m - k"V“i/iQi<l , where u and K” are the mode

frequency and parallel wavenumber,

respectively, V is the beam velocity parallel to
the external ma&netic field, and o 1is the cyclotron
frequency. This condition is easily realizable
experimentally. We should also mention that another
nice consequence for having negative ponderomotive
potential, in the center or in the inner part of the
beam, is for its confinement” against forces that
tend to disperse it like finite beam emittance,
self-fields, beam instabilities, etc.

In Sec. 1l of this paper, we derive the limiting
current as a function of beam energy, wavequide
field and the external magnetic field for solid and
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hollow beams. We present, in Sec. III, numerical

results and show that for reasonable parameter
regime, the space charge limiting current can be
greatly enhanced.

II, DERIVATION OF THE LIMITING CURRENT

To derive the limiting current, we impose the
following energy conservation condition for the
relativistic beam:

K=( -1) mc2 + ey + K2 =(r, -1) mc2 = €90 (1)

0
where ¢_ is the potential of the accelerating system
which provides all the bea@ particles with the same
kinetic energy (r. - 1) mc® on entaring the drift
tube. The left-h3nd side of Eq. (1) is the particle
guiding center Hamiltonian K which is the total beam
energy inside the drift tube. Here we are using the
notation of Refs. 4 and 5. The Hamiltonian

K{R,u,l ) results from an averaging over the
gyromot#on and the fast oscillations due to tae5
waveguide rf fields. Both averages were done™
using Lie transforms resulting in a Hamiltonian
containing only the slow effects on the guiding
center. The averaged dynamical variables have the
following meaning: The first variable R is the
radial position of the guiding center. The next
variable y is the magnetic moment and is related to
the perpendicular guiding center

drift U through y = nui /2B, where B includes the

external magnetic field, and the longitudinal and
azimuthal self-fields. Finally, U = rV_is the
parallel world velocity of the gui&ing cdnter, where
the relativistic factor is defined as

2B
r:[1+_L+
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In Eq. (1), the term (r - 1) mc? is the kinetic
energy, e4(R) is the potential energy, and
K2(R,U,U‘) is the ponderomotive Hamiltonian, which,
béing velocity-dependent, is a generalization of the
ponderomotive potential.

It is possible to show that the potential
depression is maximum at R = 0 for solid beams and
at R = R,, where Ra is the inner beam radius, for
hollow beams. Therefore, we evaluate the left-hand
side of Eq. (1) at R = 0 and at R = Ra’
respectively. The electrostatic po%entia] for a
relativistic solid beam is given by

_solid _ 1 Re

#(R=0) =T (1 +21n ﬁE]’ (2)
where I is the total beam current, and Rb and R. are
the beam and cavity radii, respectively. For a
hollow beam one can show that

2
T R 21IR R
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The expression for the relativistic
ponderomotive Hamiltonian for magnetized particles
is given by the same expression both for TEqy; mode
[see Ref. 5, Eq. (41)] and for TE;; mode [see Ref.
4, Egs. (45) and (46)], namely,

2
2/E 2 (w-k V)
-1
y(Ronv ) = 2] I : (4)

M (w - k"V“)Z-QZ

where the waveguide field amplitude E has only
azimuthal component for a TEn, mode Bdt azimuthal
and radial for a TE mode. e note

that Ky< 0 for [u -k V |/]o] < 1.

In calcdlating the limiting current, we assume
Ul /U” << 1. But depending on the application, one

might want to have Ul /U" = l,or even lJL /Uﬂ >> 1.

For these cases,our calculation carries through
straightforwardly too. It is also convenient to

assume k V /uw<< 1, though not required. In fact,in
our derivation we did not make this assumption.
However, this assumption is physically reasonable
since it is experimentally desirable to set up a
nonpropagating, or slow propagating wave field so
that the power spent in maintaining the field is
minimum,

The expression for the current in the beam
drift tube is found by substituting Eqs. (2), or
(3), and (4) in Eq. (1). The result is

T
I(-) = IG(FZ : 1)1/2(?9 1+ (5)

22
where « = e2|£L12/m2c‘w2, n = eB/umc, and Ij is the

Alfven current with a geometric factor. For a sclid

beam, one finds
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Ig = (1+2 inﬁg) (6)
and, for a hollow beam,
2
3 R 2R R
fhollow _me 14 2 g &+ -2 i 2L (7)
G R 2,2 R
Rb-R a

To determine the limiting current we maximize
I{r )}, as given by Eg. (5). The maximization
condition for both geometries is

+ 2o2)

3,2
3 KT( “20. (8)
Y

n
r r 5
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[IT. NUMERICAL RESULTS

We solve Eq. (8) numerically to find the
root T = r* . This value, when substituted in Eq.
(5), yields the limiting current Iaim = [(r1*). We
select the correct root ©* by knowing that,
when « = 0, T reduces to the well-known” standard
limiting current calculation without the rf
waveguide mode. In this case, maximization

condition gives T = F1/3

o which implies that

10 2/3

3/2
gim *

= XG(FO - 1)

In Fig. 1, we plot ™* versus n for « = 0.5.
corresponds to E = 120V/cm, which is below the
breakdown field for reasonable freguencies and
external magnetic fields.) The lower curve
corresponds to I, = 1.2 (100kV electron beam) and
the upper to r, = 1.5 (250kV beam). We note that

for large n, the curves asymptote to r1/3 , as it
should. The limiting current, correspgnding
to ™ plotted in Fig. 1, is shown in Fig. 2.

(This

Here

we plot 1 /I;:a versus n. For large n, this ratio

2im
asymptote to 1. We observe that we can achieve a
70% increase in the limiting current of a 250kV beam
(r =1.5) if we select n= 2. In Figs. 3 and 4, we
fiX n = 2.5 and calculate the limiting current
curves for ¢ = 0.1 and ¢ = 0.5 as a function of the
initial beam energy TIp. Figure 3 shows the curves

for * and Fig.4 shows the
corresponding I /1 =0 clrves
P 19 L im L eim '

In conclusion, negative pondercmotive energy
can be employed effectively to enhance the space
charge limiting current.
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Fig. 1. The root r* of Eg. (8) versus n = eB/unc
for k = 0.5,
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Fig.3. The root T* versus the beam initial
energy [g for n = 2.5,
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