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Abstract 

The space charge limiting current problem is 
investigated for a magnetized particle beam 
propagating in a cylindrical drift tllbe and in 
presence of a waveguide mode. It is shown that with 
a proper choice of a waveguide mode, the limiting 
current can be greatly enhanced due to ponderomotive 
effects. Physically, this is accomplished by using 
tne ponderomotive energy to reduce the potential 
depression due to the beam's self space charge 
field. Formulas for the limiting current as a 
function of beam energy and waveguide r.f. field for 
solid and hollow beams are derived. It is found 
frown these formulas that, in appropriate parameter 
regimes, the space charge limiting current, say, of 
a 250kV beam can be enhanced by 70%. 

I. Introduction 

Lately, there has been a steddy increase in 
exp2riments involving the propagation of high 
current particle beams in drift tubes. Typically, 
these tubes are evacuated cylindrical grounded 
tubes, where an externally longitudinal magnetic 
field can be applied. This situation can be found, 
for injtance, in e periments 
lasers , h 

on fr2e-electron 
gyrotrons , 3 collective-ion acceleration , 

etc. However, a large mnumber of theoretical 
studies and experiments have shown that the primary 
limitation for the efficient transport of hiqh 

- current beams through a drift tube is the 
electrostatic potential depression due to the beam's 
self space charge field. When the beam current 
exceeds the limiting current of the specific drift 
tube, the unneutralized beam stops propagating. 
Hence, it is important in many applications to be 
able to thwart the limitation imposed by the space 
charge build up in drift tubes. 

In this work we present a physical mechanism 
which allows us to easily obtain a 70% increase in 
the limitiny current of, say a 250 kV relativistic 
electron beam. It consists of lnaking use of 
negative ponderomotive energy of some appropriate 
cavity mode to balance the beam space charge 
electrostatic energy. Here we choose the TEII mode, 
since the maximum field occurs at the center of the 
beam, for a solid beam, and the TEOI mode, since the 
maximum field can be set at the inner beain radius, 
for a hollow bealn. These are the beam radial 
position where the electrostatic depression is 
maximum. The ponderomotive energy associated with 
edch one of these lnodes is negative 

if Jw- k ,," ,, I ' I QIL1 ' where ti and K,, are the mode 

frequency and parallel wavenumber, 
respectively, V is the beam velocity parallel to 
the external ina&tetic field, and n is the cyclotron 
frequency. This condition is easily realizable 
experimentally. We should also mention that another 
nice consequence for having negative ponderomotive 
potential, in the center or 'n the inner part of the 

4 beam, is for its confinement against forces that 
tend to disperse it like finite bealn emittance, 
self-fields, beam instabilities, etc. 

In Sec. II of this paper, we derive the limiting 
current as a function of beam energy, waveguide 
field and the external magnetic field for solid and 
hollow beams. We present, in Sec. III, numerical 
results and show that for reasonable parameter 
regime, the space charge limiting current can be 
greatly enhanced. 

II. DERIVATION OF THE LIMITING CURRENT 

To derive the limiting current, we impose the 
following energy conservation condition for the 
relativistic beam: 

K 2 (" - 1) mc2 feb +K 
2 

= (r. - 1) mc2 2 e+c, (1) 

where $ is the potential of the accelerating systeln 
which p?ovides all the bea particles with the same 
kinetic energy (r - 1) mc 1! on ent2ring the drift 
tuhe. The left-hsnd side of Eq. (1) is the particle 
guiding center Hamiltonian K which is the total healn 
energy inside the drift tube. Here we are using the 
notation of Refs. 4 and 5. The Hamiltonian 
K(R ,pi.lJ ) results from an averaging over the 
gyromot#on and the fast oscillations due to the 
wavegilide rf fields. Both averages were done v5 
using Lie transforms resulting in a Hamiltonian 
containing only the slow effects on the guiding 
center. The dveraged dynamical variables have the 
following meaning: The first variable R is the 
radial position of the guiding center. The next 
variable p is the magnetic moment and is related to 
the perpendicular guiding center 

drift 111 through u = mlJ; /ZB, where B includes the 

external magnetic field, and the longitudinal and 
azimuthal self-fields. Finally, U =rV isthe 
parallel world velocity of the guiding cdnter, tihere 
the relativistic factor is defined as 

r=f1+3!F 
u,,* l/2 

mc 2 ++ 
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In Eq. (I), the terrn (r - 1) mc2 is the kinetic 

energy, e$(H) is the potential energy, and 
&itt.u.U ) is the ponderomotive Hamiltonian, which, 
h$inj've~ocity-dependent, is a generalization of the 
ponderornotive potential. 

It is possible to show that the potential 
depression is maximum at R = 0 for solid beams and 
at R = R,, where R, is the inner beam radius, for 
hollow beams. Therefore, we evaluate the left-hand 
side of Eq. (1) at R = 0 and at R = R,,, 
respectively. The electrostatic pokential for a 
relativistic solid beam is given by 

~(R=O)so’id = 4 (1 + 2 In gj, 

where I is the total beam current, and Rb and Rc are 
the bealn and cavity radii, respectively. For a 
hollow beam ore can show that 

@R,) ho1 low 
2IRi 

Rb 
ulr . 

(R; - Rz)V,, a 

The expression for the relativistic 
ponderomotive Hamiltonian for magnetized particles 
is given by the salne expression both for TEOl mode 
[see Ref. 5, Eq. (41)] and for TEll mode [see Ref. 
4, Eqs. (45) and (46)], namely, 

where the waveyuide field amplitude E has only 
azimuthal component for a TE 

P 
mode Fj& azimuthal 

and radial for a TE mode. e note 
that K2< 0 for IW -"k,,V,,I/ln( < 1. 

(4) 

In calcdlatiny the limiting clrrrent, we assume 
UI /u,, << 1. But depending on the application, one 

might want to have VI /U,, = l,or even III/U,, >> 1. 

For these cases,08Jr calculation carries through 
straightforwardly too. It is also convenient to 

assulne k V /w<< 1, though not required. In fact,in 
our deri!al!ion we did not Imake this assumption. 
However, this assumption is physically reasonable 
since it is experimentally desirable to set up a 
nonpropagating, or slow propagating wave field SO 

that the power spent in maintaining the field is 
ilinimum. 

The expression for the current in the beam 
drift tube is found by substituting Eqs. (2), or 
(3), and (4) in Eq. (1). The result is 

I(.') = I,#2 - 1)1:2(> _ 1 +ic 
; _ ,.+ 

(5) 

where K = e21'Elj2/m2c2w2, n = eB/tinc, and IG is the 

alfven current with a geometric factor. For a solid 
beam, one finds 

solid =$ (1 
R 

IG 
c -1 + 2 q-) 
b 

(6) 

and, for a hollow beam, 

IHollow 
G (7) 

To determine the limiting current we maximize 
I(r ), as given by Eq. (5). The maximization 
condition for both geometries is 

r3 - r 
0 - 

ur3( n2 + Z-2). = o 

2 22 * 
(n -r) 

III. NUMERICAL RESULTS 

We solve Eq. (B) numerically to find the 
root r = P . This value, when substituted in Eq. 
(5), yields the limiting current Ieim = I(P). We 

select the correct root r* by knowing t at, 
when in = 0, r reduces to the well-known k standard 
limiting current calculation without the rf 
waveguide mode. In this case, maximization 

l/3 condition gives r = r. which implies that 

I lcto 

film 
= I($ ro2’3 - Q3? 

In Fig. 1, we plot P versus n for K = 0.5. (This 
corresponds to E = 120V/cm, wilich is below the 
breakdown field for reasonable frequencies and 
external magnetic fields.) The lower curve 
corresponds to r = 1.2 (10OkV electron beam) and 
tne upper to r. 2 1.5 (250kV beam). We note that 

for large n, the curves asymptote to r l/3 

should. The limiting current, corresp8ndiig 
as it 

to P plotted in Fig. 1, is shown in Fig. 2. Here 

we plot Ieim/I;$ versus II. For large n, this ratio 

asymptote to 1. We observe that we can achieve a 
70% increase in the limiting current of a 250kV beam 
(r = 1.5 ) if we select n = 2. In Figs. 3 and 4, we 
fig n = 2.5 and calculate the limiting current 
curves for K = 0.1 and IC = 0.5 as a function of the 
initial beam energy ro. Figure 3 shows the curves 
for r* and Fig.4 shows the 

corresponding Iaim/IEriO curves. 

In conclusion, neyative ponderomotive energy 
can be employed effectively to enhance the space 
charge limiting current. 
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i1g. 1. The root r* of Eq. (8) versus Q = eB/tmc 
Fig. 2. The ratio I /I$:, obtained by 

tim 

for K = 0.5. substituting r* of Fig. 1 in 
Eq. (5), versus q. 

1.0 1 I I I I I I 
1.2 1.5 1.8 2.1 2.4 2.7 3.0 

r. 
1.2 1.5 1.8 21 2.4 2.7 3.0 

r. 

Fig.3. The root r* versus the beam initial 
energy rD for n = 2.5. Fig. 4. The ratio I /IKfU 

!?.1m elm 
versus r" 
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