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ABSTRACT where 

Multipass beam breakup, a transverse beam instability 
generated by coherent excitation of cavity higher order modes 
in a recirculating linac, is a particular concern in designs uti- 
lizing superconducting technology. In this paper an analytic 
model is presented that includes a description of this effect for 
a distribution of cavities along the linac with several recircula- 
tions in an impulse approximation. For N passes and M cav- 
ities, solution of the resulting equations reduces in general to 
finding M zeros of a 2(N-1) dimensional determinant or equiv- 
alently the M eigenvalues of an M-dimensional matrix. The 
parametric dependence of this system on higher order mode 
frequencies and Q, lattice functions, and transit times is dis- 
cussed. Numerical examples are presented to clarify these is- 
sues and to model the CEBAF superconducting linac, where 
threshold currents are found to exceed design currents by more 
than an order of magnitude. 

ft, = ; = bunching frequency 

sk(w”T) = e-w Sin(kW,r) 

np = passes 

INTRODUCTION 

In the design of CW linear accelerators using the latest 
generation of superconducting RF cavities, cost optimization 
and certain operational requirements (e.g., multiple extracted 
beams) favor configurations where the beam passes several 
times through the same accelerating structure. It has long 
been recognized that recirculating a beam through a linac cav- 
ity can lead to a transverse instability in which transverse dis- 
placement on successive recirculations can excite modes that 
further deflect the initial beam. The recirculated beam and 
cavities form a feedback loop that can be driven unstable at suf- 
ficiently high currents, and this effect is worsened by the higher 
Q’s associated with modes of a superconducting RF structure. 
This multipass beam breakup has limited the current of early 
superconducting linacs such as the Stanford recyclotron [l] to 
currents of a few tens of microamperes. However, as will be 
shown in the following, improvements obtained in HOM damp- 
ing lead to significantly higher threshold currents. 

For the last site the transformation takes up(no ,M) to U,+ 1(1 ,M) 

If we assume a steady state solution to equation (1) of the 
form 

for M large, we obtain the set of equations 

+I Z,-., T;pn--l G 2 e’(p-r)M~ns h,(fl)Vp(n - 1) 

Earlier work [2,3] has addressed this effect by calculat- 
ing the beam trajectory in a single cavity. Given the lower 
HOM Q’s obtained through external coupling of superconduct- 
ing cavities of the latest design and estimates of cavity to cavity 
frequency variations, it is clear that many of the modes of the 
cavities distributed along the linac overlap in frequency. An- 
alytic and numerical efforts [4,5] have addressed this problem 
with specific attention to the design of the CEBAF supercon- 
ducting recirculating linac. In this paper some refinements and 
applications of this work are presented. 

where 

ANALYTIC MODEL 

The difference equations in an impulse approximation for 
the transverse displacement and momentum on the pth traver- 
sal (p-l recirculation), denoted by the two component vector 
U,(n,M) for the Mth bunch at the entrance to the nth cavity, 
can be generalized from that for a single traversal [6] to obtain 

Up(n, M) = T&--I Up (n - 1, M) + IZ,-lTz;n-, x 

Now we can proceed in two distinct directions in setting up the 
equation for numerical solution. First, note that the V,(n+l) 
are expressed solely in terms of V,(n) for n > 1, and the VP(l) 
are expressed solely in terms of the Vr(no) where no is the last 
cavity site. Thus, starting with equation (3b) and inserting 
first the expression for V,(no) in terms of V,(no-1) and so 

Ad++r)M.-1 

GIc c U,(n - l,M + (p - r)M0 - k)Sk (&IT) 
r=l k=l 

(1) 
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Tt$, is the transfer matrix on (z,pz) 

z, - zzee 
2Qfb 

G = (3 
2: = transverse impedance of cavity/unit length 

MO = number of bunches in one recirculation 

e = cavity length 

1 

n, = number of cavity sites 

I = average beam current 

U&L, M) = PM7 VP(n) (2) 

b(n) = T:;n--I VP (n - 1) 

r=l 

forn > 1 (34 

v~+l(l) = Tf,:; p VJn,) + 

e’(p-‘)Me”r h,(C?)V,(n,) (3b) 
I-=-L 

H,(R) sin (~“7) ___- 
hn(n) = iTH,(fy - 2 H”(n)cos(w,r) 
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on, we have a complicated, but low-dimension equation for 
V, (1) in terms of V, (1). S ince the Vr (1) terms represent initial 

conditions of the incoming beam, the resulting equation for 
coherent motion reduces to a 2(N-1) dimensional equation for 
an N-pass system; that is, coherent motion is obtained when 
the determinant of the underlying 2(N-1) matrix is zero. For a 
second point of view, note that the right hand side of equations 
(3a) and (3b) depend on the average value, P, summed over 
pass number. Thus, this system can be summed to yield an 
equation for v(n) in terms of all v(m), described by a matrix of 
dimension 2no. In fact, because of the G matrix, the underlying 
matrix is of dimension nc. The resulting linear system of no 
equations (for D,, the x-component of V(i)) is 

D, = I 2 c 2 (T,$ 12 eMon (p-r) 2, @)DL 
p=2 r<p L=l 

“0 1-l I \ 

+I 2 x (T(f) W@)Dt 
p=l kl 12 

(4) 

and is of the form of an eigenvalue equation with the inverse 
of the current as the eigenvalue. Thus, for fixed coherent fre- 
quency G there are in general no complex currents. 

NUMERIC 4L SEARCH FOR INSTABILITY THRESHOLDS -A- .__--.- -- 

To find thresholds for instability one may search in fre- 
quency and current in various ways. For this study, a plot 
of complex current eigenvalues has been found useful. First, 
the coherent frequency is swept in real frequency with an ar- 
bitrarily small imaginary part corresponding to growth. The 
nc families of complex current eigenvalues are then determined, 
with the actual threshold current corresponding to the smallest 
positive real value obtained. Figure 1 illustrates the simplest 
such plot for a single cavity location in two passes. Figure 2 
shows the added complexity for a four-pass configuration. 

The spiraling of the figures is driven by the exp(iRMar) 
factors together with the rolling-off of the impedance away 
from resonance. Although physically realizable currents corre- 
spond to the positive real axis, changes in resonator frequency 
or recirculation time delay can rotate the figure. Thus, the en- 
tire locus of points near the origin provides information about 
the threshold currents. 

For higher-Q resonators the effects of frequency change 
on threshold current can be quite dramatic. Figures 3 and 4 
illustrate this effect for a Q=320000 resonator with frequen- 
cies changed from 1890.75 to 1890.81 MHz with a recirculation 
path length of 4.19 microseconds. The threshold current differs 
roughly by a factor of 4. Note from Figures 1 and 2, going from 
1 to 3 recirculations can have a comparable effect. Thus, when 
beam breakup is driven by individual cavities (as would be the 
case when HOM are not well damped) consistent prediction, 
except for worst case minimum currents, would be difficult. 

The situation is clearly different for a set of overlapping 
resonators distributed along the linac. Figure 5 represents the 

threshold current for a modeling of the CEBAF recirculating 
linac by 50 “supercavity” modes (as discussed in reference 151) 
corresponding to the strongest HOM with an estimated fre- 
quency spread of 1 MHz. A threshold current of approximately 
12 mA is found. This result is in good agreement with more 
detailed computer simulation, which is reported in another pa- 
per at this conference 171. The design current for CEBAF is 
200 microamperes. 

LATTICE OPTIMIZATION --.______-~~ 

As can be seen from equation (4), the threshold current 
depends on the lattice through the l-2 matrix elements be- 
tween all cavity sites on all passes. For a single cavity and one 
recirculation, therefore, absolute stability can be obtained by 
forcing the single l-2 matrix element to zero. Consider now 2 
cavity locations with the same resonator frequency. Figure 6 
shows the two root families when the phase advance is chosen 
to be 0 (mod 360) degrees for site 1, and Figure 7 shows the 
two root families when the average of the phase advance for 
site 1 and site 2 is chosen to be 0 (mod 360) degrees. Clearly 
the second choice has obtained an at least local maximum in 
threshold current with improvement by about a factor of 2. 
Similar effects have been found for the three cavity site config- 
uration. It would appear that care in the choice of recirculation 
phase advance can have a nontrivial impact on current limits, 
although nothing as singular as the single cavity case has been 
observed for a distribution of cavities. For a long, distributed 
linac such as CEBAF, a lattice with constant phase advance in 
the first pass is found to exhibit threshold currents higher by 
roughly a factor of 3 for multipass beam breakup than a lattice 
with constant magnet strength with the same phase advance 
in the first cell. 

CONCLUSIO?N 

Analysis of multipass beam breakup is sufficiently well de- 
veloped to provide an alternative to bunch by bunch simula- 
tions in determining threshold currents. In addition, it can 
provide good insight into sensitivity to parameters. The next 
step is application of the method to steady state conditions 
below threshold, both in analysis of beam transfer functions 
and in the determination of emittance degradation. 
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Figure 1 
Stability plot of complex threshold current (amperes) for one 
site, two-pass configuration. 
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Figure 2 
Stability plot of complex threshold current for one site, four- 
pass configuration. 
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Figure 5 
A model calculation of beam stability in the CEBAF recircu- 
lating linac (current in amperes). 
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Figure 3 
Stability plot for Q = 320000 resonator at 1890.75 MHz. 
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Figure 4 
Stability plot for Q = 320000 resonator at 1890.81 MHz. 
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Figure 6 
Stability plot for two cavity sites with 0 degrees from site 1, 
pass 1 to site 1 pass 2. 
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Figure 7 
Stability plot for two cavity sites with 0 degrees phase advance 
for a location between site 1 and site 2 for pass 1 to pass 2. 
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