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Introduction 

Analytic calculations of the longitudinal 
coupling impedance of a cavity in a beam pipe have 
been confi.ned to pillbox geometries1’2’3. These cal- 
culations require truncation and inversion of an in- 
Einite matrix corresponding to a longitudinal Fourier 
mode decomposition in the pillbox. More recently, 
computer programs have been developed which permit 
calculation of the longitudinal impedance for an 
azimuthally symmetrical obstacle in a beam pipe ‘+,h,b . 

In this paper we use one of these programs’ to 
explore the behavior of the broad resonance which 
occurs near the cutoff frequency of the beam pipe. In 
the process wc reconstruct the analysis of Henkel for 
a small pillbox and determine the analytic charac- 
teristics of this broad maximum. Finally, we repeat 
the analysis for two small pillboxes to explore the 
parametrization of the interference between the two 
obstacles. 

Analysis for a Small Pillbox 

Henke’s analysis consists of writing the field 
within the beam pipe as the sum of a source field 

ES ES 
z’ r’ Hi’ and a source free field Ez, E:, H; which 

does not yet satisfy the boundary condition at the 
surface of the beam pipe of radius a, but which is 
well behaved on the axis. The relevant source fields 
for a relativistic beam (S = 1, y >> 1) are 

s I q= 
E =o , ZHS=Oe -jkz 

z 0 $ 2xr (1) 

where q is the charge, Z. = 12.0~ ohms is the impedance 

of free space and exp(jkct) is the time dependence of 
all fields. The source free field is written as 

EL = 
J (Kr) 

;“_, dp F(P) h e-j”* 
0 

(2) 

z “I = 
J’(Kr) 

0 e 
-jka ,f”, dp F(p) Ka; (Ka) e-j’s 

0 

where K* = k2 - p2. 

The fields in the cavity can be considered inde- 
pendent of z for a pillbox whose length is small com- 
pared to its radius. Specifically, we can write in 
the pillbox 

E 
II =MPo 

P(ka) ’ 
Z. HiI = -jM w , (3) z 

where P(x) = Y,(x) Jo(kb) - J,(x) Y,(kb) is the linear 

conbination of Jo(x) and Ye(x) which vanishes at x = 

kb, where b is the pillbox radius. 

We now matc!l Es at r = a in Eq. (2) for all z 

with its value M in the pillbox at r = a, for -g < z < 
a> where 2g is the (small) axial extent of the pill- 

box. The inverse Fourier transform to Eq. (2) gives 

F(p) = 2 ,fg dz ejpz = $ sin pg. 

The source free magnetic field is then 

z HI = - T ,“, 4 H(p) [,+jp(g-2) _ 
0 e 

e -jp(z+g)lc5) 

where 
J’(x) 
0 

H(p) = xJ,(x) ’ 
2 2 x = Ka = (k a -pa) 2 2 l/2* (6) 

The analytic properties of Jo(x) in the complex plane 

permit us to write H(p) as a sum over the zeros of 
J(x); specifically 

J ’ (x) 
H(p) = h = 2 ; A = -2 F ,; 2’ 

0 s=l x - j 
S 

s=l p a + P 
s 

where 

- k2a2 = - b2 
s ' 

= k2a2 - j2 . 
S 

The poles in Eq. (7) must be carefully considered 

we close the contour in Eq. (5) to evaluate Z HI 
0 4)’ 

< z prior to taking the limit g + 0. In fact, for -g 
< g we will be closing the contour for the first term 
in Eq. (5) in the upper half plane, using the pole at 
pa = jS, and for the second term in the lower half 

plane, using theh pole at pa = -113,. The pole at p = 

0 in each term will arbitrarily be placed in the upper 

half plane. For the poles at pa = fb,, when bt > 0, 

we will use the results for Sz > 0 with p, = jbs, cor- 

responding to the outgoing boundary condition for the 
disturbance generated by the pillbox. 

(7) 

(8) 

as 

Matching ZoH+ in the opening of the pillbox then 

leads, for small g, to 

1 -9 [-j w-2 kgW], 
M 

where W = j y B;L”= U + jV, with 
S=l 

S 
S 

U = 1 (k2a2 - js) 
s=l 

2 -l/2, V = j r"(ji - k2a2)-"2.(10) 

s+1 

Here S is the number of the largest root of Jo(x) be- 

low ka and Smax is a cutoff depending on g required to 

keep Eq. (IO) from diverging. 

The coupling impedance is defined as 

Z(w) = - + ,“, dz .jkz &,r=O) = - -rR F(k) (11) 
z 9 

where the last form of Eq. (11) is obtained from Eq. 
(2). Using Eqs. (4) and (9) we then find, in the 
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limit of small g, 

Y(W) z 1 = - 
Z(w) 

&=$- [$w+ 2kaW]. (12) 
0 

If we assume A f b-a << a, we can approximate 
P’(ka)/P(ka) to obtain our final result for a small 
pillbox: 

Y(W) = -$ [- f$ + 2ka(‘J + jV] 
0 

Figure 1 contains plots of R(ka), the real part, 
and X(ka), the imaginary part of Z(w) obtained with 
our computer program5 for 2g = .OSa, A = .la. These 
results agree with those of Henke’ for the same para- 
meters. The curves are exceedingly complex, showing 
among other features, the singular nature of the re- 
sults whenever ka = js, that is, at the cutoff fre- 

quencies of the beam pipe. The results however appear 
much easier to interpret when we plot G(ka), the real 

part, and B(ka), the imaginary part of Y(o), as in 
Fig. 2. In fact, the features of Eq. (13) appear to 
be very visible. Specifically, G(ka) reflects the 
steps which occur as ka passes each js, and B(ka) re- 

flects the steps which occur just prior to ka passing 

JS’ 
as well as the smooth first term in Eq. (13). 

One can draw further conclusions from Eq. (13). 
First, the terms containing the singular behavior for 
ka = js are independent of g and A (except possibly 

for the logarithmic cutoff in Smax). Second, the 

smooth first term depends only on gA which is propor- 
tional to the volume of the pillbox. These features 
have been tested and generally confirmed by repeating 
the computation for small pillboxes of different size 
and shape. 

If we consider smoothing the rapid fluctuations 
in the curves of Fig. 2, it is apparent that the re- 
sult will correspond to a broad resonance. This can 
be done analytically from Eq. (13) by replacing the 
sum over s by an integral, the final result being 

2. Y(w) 
0~ -2. 2kaW, 

TI kgA 

What Eq. (14) suggests is 
impedance Z(o) as 

2WZl+3il(n( 
2nS 

T[ +=).(14) 

that we parametrize the 

Z(W) = [kaA + j(kaC - (k)]-’ (15) 

and obtain A,C,D from a least square fit of 
IZ(w) - Z(u)!2 to the numerical results. This has 
been done, with the result shown by the dashed curve 
in Fig. I for 2g = .OSa, A = .la, and in Fig. 3 for a 
semicircular obstacle of radius ,la. The dashed curve 
in Fig. 1 corresponds to A = .00830, C = .022, D = 
3.44, and corresponds, according to Eq. (141, closely 
to the predicted values A = l/120, D = 10/3. The 
predicted value of C 
well as 

depends on the cutoff Smax as 
the value of ka at the maximum. 

The analysis for two pillbox obstacles proceeds 
in exactly the same way. The finai result for Z(U) is 

rZ(w) Yl + y2 
- 4kaT cos kL 

__ = 
2 

- 4k2a2T2 
> 

0 
y1y2 

dhrre L is tie center to center separation of the 
c h c L li c : e s 1 a 1 d 

(16) 

ja 
-B,L/a 

y1,2 = - 
kg1,2*1,2 

+ 2kaW , T = j i F .(17) 
s=l S 

We have here allowed the obstacles to have different 
dimensions. 

For large L, the terms involving T and cos kL can 
be neglected and we obtain 

2 
Z(w) = p Ly;’ + $1 , (18) 

corresponding to the sum of the impedances, as ex- 
pected. For L + 0 we have T : W, in which case 

Y(W) = ” [ -ja - + 2kaW], 
o k(glAl + g2A2) 

(19) 

corresponding to a combined obstacle volume which is 
the sum of that for each one. The transition from Eq. 
(18) to Eq. (19), as governed by Eq. (161, contains 
the relevant information about the interference of the 
obstacles, as far as it affects the broad resonance. 

In analogy with the “smoothing” of 2W in Eq. 
(lb), we can also smooth T in Eq. (17) by converting 
the sum over s to an integral. In this case the sum 

becomes an integral representation of H 
directly to 

i2)(z), leading 

2T E Hz2+kL). (20) 

The remarkable feature of this result is that, for 
touching pillboxes, L = 2g, and, for kg << 1, 

2kaT -f 2kaW : ka H (2)(2kg) 
0 

= ka [l + 2 Bn &] (21) 

where BnK = .5772 is Euler’s constant, suggesting a 
cutoff of smax = 2Ka/2ng in Eqs. (10) and (14) for a 
pillbox of length 2g. 

The parametrization of the interference is still 
quite complicated. The presence of the terms in T and 
cos kL in Eqs. (16) and (20) suggests that there are 
damped oscillations for large kL of the form 
exp(-2jk ) with relative amplitude proportional to 
(8,xkL)152. Interference effects will therefore not 
be reduced to 1OZ until kL is of order 250. In those 
cases where the broad peak is located between ka = 5 
and 10, interference is therefore expected to be 
important until L/a exceeds 25 to 50. 
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Fig. la. R(ka) vs ka for b = l.la, g = aj40* 
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Fig. 2a. G(ka) vs ka for b = l.la, g = a/40. 
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Fig. lb. :c(ka) vs ka for b = 1.13, g = a/40. 

Fig. 2b. B(ka) vs ka for b = 1.1~1, g = a/40. 
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