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Introduction 

Lie algebraic methods as implemented in the code 
MARYLIE have proven successful for a variety of 
accelerator studies. Until now, these have not taken 
into account alignment and powering errors. Treatment 
of these errors will be briefly described here with 
more details given in reference 1. 

We may consider a particle’s motion to be com- 
pletely described by b phase space variables ci (i = 

1 , . . . . 6): 3 coordinates and 3 canonical momenta. 
These variables will be a function of some independent 
variable z, and we indicate propagation of a particle 
from one value of-z to a later one by application of 
the map iti to C: c = MC. We shall take as the coordi- 
nates X and Y, the two coordinates perpendicular to 
the beam’s design trajectory, and T, the flight time. 
All these quantities, and their canonical momenta, are 
measured as a deviation from the design trajectory, 
and so are numerically small for particles close to 
it. We may therefore use a Lie algebraic perturbation 
series to represent the transfer map. The independent 
variable z we use is the longitudinal distance. 

The maps are represented by the Poisson bracket 
Lie algebra. The Poisson bracket is defined by 

[f,g] = ; dfL$g- 
i=l axi ap. 

1 i i 

where xi, pi are the coordinates and canonical con- 

jugate momenta of i: respectively, and f and g are 
arbitrary functions on phase space. It has the pro- 
perty that [Ci,Tj] is 0 if 5, and t: 

j 
are not canonical 

pairs, and 1 or -1 if they are. We may turn a 
function f into a Lie operator :f:, which is defined 
by its action on another function g, :f:g = [f,g]. 
These Lie operators also form a Lie algebra. More 
useful than the operators themselves are Lie transfor- 
mations, the exponential of Lie operators; 

ezf’ = I + :f: + + :f:2 + . . . 

where I is the identity operator. It is possible to 
represent the map hi as a sequence of Lie transforma- 
tions factored by order 

M=e 
:fl: :f2: :f3: :fq: 

e e e . . . . (1) 

where fn is a homogeneous polynomial of order n in the 

coordinates and momenta. Note that the orders of the 
polynomials may be associated with the degree of the 
transformation. Because a Poisson bracket involves 
two derivatives we may conC:ude [f,,g,] = hn+m-2. 

Therefore, for instance, e 1: c is < plus:; constant, 

3: e 
:f2: 

I: is a linear transformation of c, e c is 5 
plus higher-order terms in thffphase space 

variables. An example with e 1: is gtven below. 

One may identify the first term in the sequence 
(1) with certain errors. If there are no errors, fl 
;Yill be zero, but iE there are alignment errors or 

mispowered dipoles, then fl will in general not be 

zero, and is proportional to the error. Alterna- 
tively, the first-order polynomial in the factoriza- 
tion is equivalent to the constant term in a Taylor 
expansion of ly . If a quadrupole is misaligned, a 
particle entering on the design trajectory would feel 
a dipole field and would be bent off the design trd- 
jectory. Therefore, while the initial coordinates 
would be zero, the final coordinates would not, re- 
quiring that the Taylor series have a constant term, 
or the factored map have a first-order term. 

While in general it is a lengthy calculation to 
obtain the factored map, it is possible to see how to 
write the map for a simple coordinate translation AX 
in the X (frr$p+ane) direction. Such a translation is 

given by e 
: x: 

, i.e., fl = -(AX)Px and fn = 0, n > 

1. If we calculate the effect of this transformation, 
we indeed verify that 

ji=e 
-AX:PX: 

X 

= X - AX [P,,X] + + (AX)2 [Px,[P,,X]] . . . = X + AX, 

i.e., the new X coordinate ? differs from the original 
X by a constant AX. Later sections give the outline 
of the calculation in the general case. 

Errors 

The use of Lie algebraic techniques for a des- 
cription and analysis of lattice parameter errors, 
i.e., small deviations in alignment and powering of 
elements, involves several major components. First, 
one must have an adequate description of the errors. 
For a mispowered element, one specifies, for instance, 
the field error ABIB. For a misaligned element, on 
the other hand, the situation is more complicated, and 
is described below. 

Once the description is available, one wants to 
generate the complete factored map of the form (1) 
from it. From all these maps, we may concatenate, or 

join, them into a single map of that form, repre- 
senting a beamline or section. With the concatenated 
map, it is possible to track particles or find the 
ffxed point and map nearby, giving lattice functions 
such as tune and chromaticity. 

We address each of these topics separately in the 
following sections. 

Misalignment Description 

In order to generate the map of a misaligned 
element, one first picks a particular point in the 
element, the fiducial point, and describes how it is 
positioned and oriented relative to how it should be 
positioned and oriented. This may be done by any 
parameterization of the Euclidean group. We have 
choosen three translations and three Euler angles. 
From these parameters describing the misalignment at 
the fiducial point, B, we need to determine the mis- 
alignment, C, again in terms of the Euclidean group, 
at the entry and exit faces. This may be done by 
simple geometric analysis and knowledge of the multi- 
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plication and inversion rules for the Euclidean group. 
If A is the Euclidean group element describing the 
change from the fiducial coordinates to the entry or 
exit face coordinates, we use the fact that this is 
the same in the ideally positioned magnet as the 
actual one to conclude that C = ABA-l. 

Production of Maps 

From the Euclidean group element describing the 
misalignment for the entry face and exit face, or from 
the Hamiltonian of a mispowered dipole, it is possible 
to produce a factored Lie algebraic map by a process 
analogous to that of producing an ideal element map 
from a Hamiltonian. By assuming the error is small, 
we may conclude that the first-order term in the 
Hamiltonian is small; say that it is multiplied by a 
small quantity E. Specifically, we assume that the 

individual, element errors contribute no more to the 
position and momentum errors of a particle than a 
particle may typically deviate in position and 
momentum from another in the bunch. 

The process is iterative, with each step 
generating a new pseudo-Hamiltonian that has a first- 
order term one order higher in the small quantity E. 
Eventually, the iteration may be stopped because the 
remaining Hamiltonian may be neglected. The iteration 
is in powers of E; for E = 0, it has one step. Each 
step in the iteration produces a set of terms 

. . . 

on the right; when we are done we shall have a series 
of second-order-and-higher sets: 

:g1: 
:g(n): (n): :gtn): 

= e e 
2 e%3 

e . . . 

:g(l): :p: :gy: 
2 

x e e e . . . 

We may than concatenate the V (i) to form a single set 

hi=e 
:fl: :f2: :f3: :fq: 

e e e . . . 

witi fl = gl, using the techniques described below. 

By studying the dynamics, it is possible to cal- 

culatc what each of the (n) 
g, are by integrating the 

pseudo-Hamiltonfans H (i) and integrals of Poisson 
brackets of them. If it happens that the operator of 
the Hamiltonian, :H:, commutes with itself at dif- 
ferent values of the independent variable, all the 
Poisson brackets go away and the calculation is 
straightforward. On the other hand, if it does not, 
the calculation can be quite involved. 

For a mispowered dipole, one will then have the 
factored map. For a misaligned element, one need only 
calculate the factored map for the coordinate trans- 
formations at the entry and exit faces represented by 
C. They may be determined independent of specific 
knowledge of the element, save for the general state- 
ment of geometry given by the Euclidean group element 
A . These maps ;nay be sandwiched around the ideal 
element map and then concatenated as described in the 
next section to produce a map for the misaligned 
element. 

Concatentation 

Once these maps have been determined, it is de- 
sirable to concatenate them, that is, produce a single 
map corresponding, through a given order, to the com- 
bination of two or more maps 

e 
:hl: :h2: 

e .:h3: ... 

= e 
:fl: :f*: 

e 
p ... e:gpe:g2:e:gy ... 

(2) 

This includes feed-down effects due to the errors. 
Thus, for example to determine the map for a mis- 
aligned quadrupole, we would need to concatenate three 
maps, the coordinate transformation map at the leading 
face, the map for the ideal quadrupole, and the coor- 
dinate transformation map at the trailing face. 

There are two tools available to derive the 
formula for the concatenation of maps. One is the 
Baker-Campbell-Hausdorff formula for combining 
exponentials: if 

e :f: ,:g: = .:h: 

1 
then :h: = :f: + :g: + 7 [f,g] + . . . . where each 

successive term is an operator of nested Poisson 
brackets of f and g. Applied to this calculation, we 
would join two exponentials into a single one, to the 
appropriate order, then separate them order by order 
in the right sequence, again using the Baker-Campbell- 
Hausdorff formula. 

The other tool is the transformation rule 

.:f(r,): .:g(C): = .:g(e :f(C):s): e:f (t) : 

This is especially useful for second-order polynomials 
(linear maps) whose involvement in the Baker-Campbell- 
Hausdorff series would prevent its truncation by 
order. 

Given no restrictions, the concatenation (2) 
would produce an infinite number of terms. In order 
to make this calculation tractable, one must assume 
the first-order polynomials are small in some sense. 
This will be the case for the Hamiltonian of an 
element with a small error as discussed above: a 
small factor E multiplying the first-order term of the 
Hamiltonian will appear fn the first-order term of the 
factored map. Then the presence of terms involving 
too many of these small quantities may be safely 
neglected. With this assumption, it is possible to 
derive concatenation rules to any desired order. 

The general process for concatenation is as 
follows. First, we concentrate on moving the first 
order term to the left. That is, with the tools des- 
cribed above, rewrite the adjacent pair of transforma- 
tions so that they are factored in the proper order, 

:f : 
e 

n ,:gl: = .:kl:,:k2:,:k3: ... 
(3) 

Initially, n will be the maximum order m of the 
polynomials, and because of this, we may write 

:f 
e 

m:e:gl: _ .:gl:e:fm: 
. 

The next Lie transformation of order m-l may not be as 
simple, however, and in general the polynomials ki are 
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not trtvia1. At each Lie transformation, the resul- 
:kl: 

tant e is picked up for use with the next Lie 

2. Dragt, A.J. and E. Forest, J. Math. Phys. 4, 2734 
(1983). 

transformation according to (3), while the e 
:k,: 

,“> 3. Forest, E., Ph.D. Dissertation, University of 

2, are left behind for later. Eventually, all first- Maryland, August 1984, unpublished; E. Forest, 

order terms will be towards the left, followed by the Normal Form Method on Nonlinear Symplectic Maps, 

second and higher order terms. The first-order terms SSC-29, April 1985, unpublished report of the SSC 

may be combined into a single exponential because any Central Design Group, Berkeley, California. 

Poisson bracket is a constant. Next, the terms second 
order and higher may now be treated. First, the 
second-order terms are moved to the left by using the 
transformation rule. Then the higher-order terms are 
brought into proper sequence with the Baker-Campbell- 
Hausdorff formula as described above. 

This process will work to any desired maximum 
order m. Currently, the calculation has been done 
through m=6, i.e., dodecupole order. 

Tracking 

It is a straightforward matter to track particles 
with these factored maps; one first changes the phase 
space variables by adding constants corresponding to 

:fl: 
the transformation e . 

:f 
Then one applies the linear 

transformation e 2: specifically by taking a matrix 
dot product with the’6-vector of coordinates and 
momenta, because the linear transformation is actually 
stored as a matrix. From these, one may apply the 
higher-order parts of the map (polynomials of order 
three or greater) either by expanding to a certain 
number of terms the exponential to a series of Poisson 
brackets, or with a method that ensures the symplecti- 
city of the result. 

Closed Orbit Determination 

If one knows the closed orbit (or fixed point of 
the map) and the map around it, one can then apply a 
wide range of analysis tools that have been develo ed 
for Lie algebraic maps of machines without errors. 5 

These include finding the tune, chromaticity and tune 
dependence with amplitude. The fixed point and 
adjacent map can be regarded as an alternate 
factorization of the map. Specifically, it is given 
by the polynomials gn where 

= e 
-:gl:e:g2:e:g3: ,354: 

. . . e 
:gl: 

The transformation e 
-:gl: 

maps 0 to the closed orbit, 
and the g,, n > 2, give the map around that point. 

These polynomials may be determined from the 
polynomials fn by one of two simple iterative schemes, 

one for the time independent case and one for the time 
dependent case. 

Finally, these and related techniques are des- 
cribed in much more detail in reference 1. They have 
been coded into a working and tested code MARYLIE 3.1, 
which does such computations through order 4 in the 
polynomials (octupole order). A similar code, MARYLIE 
5.1, accurate through order 6 (dodecupole order) has 
been coded and is being tested. 
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