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EMITTANCE GROWTH IN INTENSE MISMATCHED BEAMS

0. A. Anderson and L. Soroka
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

we use analysis and numerical simutation to study
neverse rms emittance growth in a space-charge
nated tbeam, mismatched fo its transport channel. We
¢iscuss two cases: (1) a uniform cold beam injected into 2
=lightly nonlirear channel, and (11) a semi-Gaussian beam
iniected into a linear channel. Nonlinear coupling damps
mismatch oscitlations, converting the mismatch
ctrostatic energy into emittance growth. In case I,
alysis shows a slow growth rate proportional to the
channel neniinearity parameter and predicts nearly
complete dampmg and conversion to emittance growth; our
muiations confirm these predictions, in case Il the
ridlations show that dampmg is arrested and conversion
is incormplete. Sequences of density profiles clarify this
effect  The phase of the profile osciliations changes,
after a few plasma periods, in a way that inhibits the rms
emittance growth. The growth is entirely due to a halo
that includés only a small fraction of the beam, unlike the
situation in case L
In generat, little practical
tween phencimena in sheet beams and round beams, !
e aralysis 15 usually much simpler in the former
nerefore, 10 the present report we restrict oursely
sheet beams
Wwe yse tre standard pearm model! and again simpiify
tions by ormttmgt refativistic factors !

Ref. |
Giscrsses how the correction %75 may be applied whern
aopropriate.

Ty

there is differ

D

nce
but
a5
S

Ty R,

.
to

Case I Mismatched Beam in Nonlinear Channel

For a beam density n(x,z), the number of particles per

suare centimeter within nalf-width x is

‘ X

Noixz) = 0{ nix,,z) dx,, (N
and the total number per square centimeter N is found by
extending the upper limit to include all of the beam.
Defining the normalized 1ine perveance P = 4rNe?/mv?2 and
tre transverse space-charge electric field 41meNy, we have
the space charge term in the equation of motion

X7 = PNAXZIIN - kZx(] o x2/g9) (2)

The secend expression on the right resresents an external
toecus ng force with a cubic nonlinearity parameter g, f
the Tmear part of tne force is Fo, tnen the focusing
congtant ka* is cefined by the expression Fe/mv2 = - kgéx
In £q. (2), 'we nave also introduced the transverse scCale
length g = P/kg?.

3 coldobeam, the flow is initially laminar and the
space-charge term 1n Eq. (2) is constanl. we show iater
that it usually remains constant during most of the
emittance growth. Wwriting the initial position x(Q) as g
and the Inithal beam edge as h, we have for each particle 1n
an initially uniform beam the corstant gquantity X

Ny/N o= 5/h = X (3)
with DX ¢t inserting Ea. (3) in £g (2) and solving, we
obtain?, to first order in | and o,

(X, 2 = (42)

(4p)

aXfl-oxer (L +oxdcoskz];

L 3

k= ko +on2)

with the mismatch parameter yp = (h/q) - 1.
Mean square beam size. To lowest order in y and in

the nonlinearity parameter g,

K272 = X220t 2(ux? + axHcosl(r+ %oxz)koz}.
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For laminar flow, we take averages as in Ref. 1t

- - =S N .
‘_ wé o= N ]O} GE n(E) X205 20, (<)
%2 = E;%«Z(x)ax = q¢[1/3-20/5+ Zul,+ 2ol ],

where [, and |, are combinations of trigonometric

functions and Fresnel integrals. We see the effect of the
noniineartly parameter g by expanding this resuit for iarge

Z Wwe obtain the leading terms

" N 20 2 ‘ \
x> = a*[: - E ot o3 (pw)smkoz] (&)

3 5 Jokgz
The 77! damping of the envelope osciliations implies

transferrence of energy to emittance grewths [ventually
faminarity ceases and Eg. (6) loses accuracy, but, as we
shall see, not necessarily before the emittance growth is
esaentially complete. Fl?. fa shows a simulation result
wnich for targe z agrees closely with Eq (6)

Fhase configuration. Eq (4) gives, to fowest order,

v

: 3 . I -
K(K,2) = =k aax(p + 0;1\?)(“; oxXDsinl (1+=0Y2kyz], (D)

which, with &g (4, gives the phase configurat:on. Tne
team edge cscillates 2t different freguency from the
center; the growing Irrequiarity causes rms emittance
arowth, as ilustrated inFig. 1b

wn

5 3 |
- £ U
><E “ % |
o @ | S ®) |

ol . L
0 k,z/2n 50 15 X (cm) 1.5

131 R73-1034

Fig. 1. (a) Damping of envelcpe oscillations for = 0.03,
0 =0.02. (b) Phase-space configuration at k,z/21 = 40.
Rme Emittance As in Ref 2,
definition of mean square emittance,

we use Sacherer's

€4 = xZs x> - (xx e (8)
We evaluate <x"2> and <xx”> in terms of Fresnel integrals
ana eéoar}? theTse for small and farge z.

omall z To lowest order in i and g, the mean growth
rate is

2 = P" 2 2 . 3

€ g7 (407 + A ] (G2)
10 5

Ay o= e Fpo v 50?) (95)

we have defined the normalized distance T = 30k,z and
nave omitted ail oscillatory terms, as discussed in &ef. 2.
Curing the main part of the emittance growth, the A, term
dominates and the growth rate is
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large 7. To lowest order in T7!, again omitting
oscillatery terms,

p2 6 3 9 12
= 2¢ 2hg+202) - 2
€ m[(p * S ho 70) ‘;T(JJ*O)] N

To get the asymptotic value €,, we neglect the last term.

Typically, 0 < J1, so that €., = |1, i.e, the final emittance is

proportional to the mismatch, as might be expected.

’ we divide €, by Eq. (10) to find the nominal growth
istance

_ 175 20
kOzgrowth 33/20[ + zg“ﬂ' +o ] (12)
In the typical case 0 < y, we see that z « 1/0. The

growth rate is proportional to the nonline%rw;? parameter.
Lamiparity. The flow Is laminar up to the critical

distance given by? 30KoZ.. % (i + 0)7F, 50 that the
condition for growth toQDe essentially complete during
laminar flow is

H+o < (3717912 (3

Analysis ys Simulation.  Equations (9) and (11)
describe the growth of emittance to lowest order in the
mismatch and nonlinearity parameters Fig. 2a shows the
result for the case y = 0.03, 0 = 0.02, for which the
laminarity criterion,” Eq. (13), 1s well satisfted  The
simulation for this case, Fig. 2b, shows the exact solution,
including the oscillations which we chose to suppress in
the analysis.
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Fig 2. Emittance growth from mismatch in ponlinear

channel. (a) Small z [Eq. (9)] and large z [Eq. (11)] analytic
results. (b} Simulation result.

Case 1. Mismatched Beam in a Linear Channel

tt is not easy to get analytic results for this case
because the entire efféct depends on non-laminar flow.
However, one can appeal to conservation of energy and note
that there is a large electrostatic energy assoclated with
beam mismatch, so that the emittance growth could be
large. (Formulas are derived in Ref. 2) The energy
argument does not determine how much of this
electrostatic energy is eventually converted to rms
emittance (disordered motion) and how much simply
persists as a coherent oscillation.
Some insight is obtained from what is kpown as
wangler's equation.3® The sheet-beam version is!
d P d
€2 = - w3 X
@z € 73 * az Un-

where X = <x$>1/2 and where Uy is the normalized free
energy or shape factor!, which is zero for a uniform beam.
We assume that the mismatched beam size X oscillates
nearlr sinusoidally over a given period. Then, if the
osciltation period is 21/k,, we have

(14

"e

X + 8cosk,z,

X
X 2 X+ 38 Xcoskyz ¢ 0D (IS)

The overbars indicate an average over the given period.
The U, oscillations usually have pronounced harmonic
content, so we write

Up = Uy *+ 8Upcostk,z+ ) + harmonics,
Un'(Z) =

with a phase difference ¢ with respect to X. We muitiply
Eq. (13) by (16) and integrate over the given period. if we
drop the O( 8X<) terms, the harmonics do not contribute,
and the growth during the period, from Eq. (14), is
a2 = Lo s sy, sing.
2

If the profile oscillations lag significantly behind the
envelope oscillations, there will "be emittance growth
proportional to the variations in X and in Un. ut if
eventually the shape and size vary together, trF\e growth
stops

imylation for Semi-Gaussian Case.
numerical simulations for X(z), Uy(z), and €2(z) which
confirm Eq. (17). Near the beginnin (#ig. 3a) the profile
oscillations lag behind (by nearly 90°) “‘giving maximum
rowth rate for € Further on (Fig. 3b), the dscillations
ecome synchronized and the growth stops.

Fig. 4a shows phase plofs and density profiles for a
semi-Gaussian initial configuration, the Same case used
for Fig. 3. One sees two corners of the distribution
function rotatin? in phase space faster than the core so
that a halo develops. The density profiles show that this
halo contains only a small fraction of the beam. These

13

-k, 8Up sin(k,z + &) + harmonics, (16)

(7

Figure 3 shows
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Fi?. 3. (a) Emittance growth during period when Uy, 1ags X.
(bJ Stationary emittance after Uy pulsates with X
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profiles are displayed at z values that coincide with the
minima and maxima of the shape factor Uy inFig. 3.

Fig. 4p illustrates the s&nchronized reguiar breathing
of the beam size and shape which occurs later (cf. Fig. 3b).
The halo accounts for all the emittance growth; if a'smali
percentage of the beam were eliminated, the rms
emittance would be no ?reater than the original value.
This illustrates a general principal: rms results can be
quite misleading for functions with long tails.

In comparison, a weakly nonlinear channel (Part D)
gives slower emittance growth, but the final effect ma

e more significant because all of the beam is involve ,
not just a halo.
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Fig. 4a. Phase plots and density profiles during the period of rms emittance growth. The
initial distribution is a truncated semi-Gaussian. As in Fig. 3, the initial tune depression

(0/0g) 15 0.26 and the mismatch is 44%.
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Fig. 4b. The same case after saturation of the rms emittance.
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