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Introduction ~I__ 

The large transient beam displacement which 
occurs in a high current linear accelerator consisting 
of identical sections can be reduced by including 
transverse focussingl. In the work conducted at 
SLACl, the focussing was considered weak compared to 
the beam breakup “def ocussing”. More recently’, 
Yokoya has shown that there is some amplification of 
the transverse oscillations due to beam breakup even 
if the external focussing is strong. 

We have started with the difference equations for 
cumulative beam breakup3 and have obtained expressions 
for the transient behavior of the transverse displace- 
ment in both limits. Simulations are then used to 
connect these limits through the region of 
intermedfate transverse focussing strength. 

Differential Equations 

If one extracts the exp(iMw7) behavior from both 
the cavity excitation and the transverse displacement 
and angle, the resulting difference equations 
involving slowly varying functions of N and M c;;n 
readily be approximated by difference equations . 
Here X is cavity number, M is bunch number, w!~R is 
the deflection mode frequency, and T is the time 
interval between beam bunches. (!Je assume the non- 
resonant condition that w~/2n is not near an 
integer.) If we write the displacement as 

E(K;,M) = Re [w(N,M) eiMtiz], (1) 

we obtain4 

2 
aw + p?w = z a2 

aN2 
1 W. i*TG=2 (2) 

Here p is the phase advance of the (smooth) transverse 
oscillation in the absence oE beam breakup, and r = 
RL/y is a parameter proportional to beam current and 
the transverse shunt impedance of each cavity3. The 
complex parameter z(N,si) is proportional to the 
amplitude of excitation of the Nth cavity at the time - 
the Mth bunch transverses the cavity. - 

If we assume that w and z have exponential depen- 
dence of the form 

w(N,M) = Weq(N*M) , z(N,M) = Zeq(N,M) (3) 

and neglect derivatives of W and Z, as well as second 
derivatives of the slowly varying exponent q(K,M), we 
obtain the equation 

f(g)* + !2] 2 = $ , (4) 

where we permit r to have dependence on N in the 
general case. Our task is to solve Eq. (4) for small 
p (treating the transverse focussing as a small 
perturbation) and for small r (treating beam breakup 
as a small perturbation). 

Focussing as a Small Pertubation 

It is possible to solve Eq. (4) as a power series 
in p.2. The result for the first two terms is 
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where G(N) = i”, dn Jr(n). The corresponding resillt 

for the maximum displacement with a single offset 
pulse is 

where the real part of the exponent for the case ,dhere 
beam breakup dominates is 
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Here 
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where the last form is valid for p and r independent 
of n. The peak of pb(N,M) occurs at bunch number Mb 
given by 

Mb -= 
M (2 ' 
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at which pb has the value 

Th=(2--)( 2 h-q + 91/2 
, (10) 

PO 

where X0 and p, are the peak bunch number and exponent 

for il = 0 (p = 0). Thus p is a scale parameter for 
measuring the importance of focussing in suppressing 
beam breakup. An alternate form of p is easily 
obtained from Eq. (8) as 

P = ‘y’ , 
0 

(11) 

which is the square of the ratio of the total phase 
advance in N cavities to the maximun exponent. 

Beam Breakup as a Small Perturbation 

The solution of Eq. (4) can also be obtained as a 
power series in r. The result for the first two terms 
is 
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q(N,M) z i ,t pdn + [M 1: -&$-$ dn]l/‘. (12) 

The corresponding result for the maximum displacement 1000 

with a single offset pulse is “lur “I kuwml ITBCYnl 
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where the real part of the exponent for the case where 
focussing dominates is 

8ur 114 
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Here 

p=82E[ 
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where the last form is valid for p and r independent 
of 1. Comparison with Eq. (8), which holds for small 
b, suggests that LI should be replaced by sin 1-1 in Eq. 
(8). The peak of pf(N,M) occurs at 
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at which pf has the value 
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Comparison With Simulations 

Simulations have been performed for the same 
parameters used enrlier3, namely WT~Q = 11.6 x 10 -3 

, 

r = 2.88 x 10-3, for values of sin p from 0 to 1. In 
each case the value of M at which the transient peak 
occurs and the value of the peak exponent 
lh(/c,a,l/~o)l are compared with the corresponding 
values in the absence of focussing (ii = 0). The 
quantities Mmar and 9-n(I~max//~o)‘are plotted in Figs. 
1 and 2 against’ sin*n. The figures also contain the 
low and high p approximation in Eqs. (9), (lo), (16) 
and (17) and confirm the validity of these 
approximations as well as the universal dependence of 
the results on 

p = 9 "(; sfn2P 
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Discussion 

We have successfully derived the transient beam 
breakup behavior in the presence of transverse 
focussing in the limits of focussing small or large 
compared to the defocussing effect of beam breakup. 
Simulations show that the maximum bunch number and 
exponent vary smoothly with the focussing parameter 
given in Eq. (18). The scaling parameter p directly 
determines the focussing strength necessary to 
suppress transient beam breakup to the desired level. 
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Fig. 1. Bunch number at maximum vs. focussing 
strength for WT/~X = 24/13, Q = 1000, 
r = 2.88 x lo+, N = 30. 
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Fig. 2. :~~:~z~n~x~~~~~~t~“~~~~~~~~~~~)~4~~~, 

Q = 1000, r = 2.88 x 10-3, N = 30. 
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