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Summary 

A steady-state, electron-ion beam propagation 
model is presented that self-consistently determines 
the downstream equilibrium properties of co-moving 
electron and iOIl beams in terms of upstream 
properties. Since there is no applied magnetic field, 
the presence of the ions is crucial to the downstream 
equilibrium. The ions are assumed to come from a 
localized source located near the entrance end of the 
injected electron beam. Each species has finite 
temperature in addition to a mean axial velocity. 
Downstream radial force balance leads to a Bennett 
radial density profile. Continuity of current and 
conservation of single particle energy lead to the 
self-consistent nature of the equilibrium and the 
determination of the localized ion source properties to 
achieve the equilibrium. The main quantitative result 
from the model is that an electron temperature exists 
where the equilibrium is nearly charge neutral and the 
ion mean velocity is near zero, that is, the ions 
provide no current neutralization. If the ion 
temperature is zero, this state represents the 
"traditional" Bennett pinch system. 

Introduction 

The propagation of intense relativistic electron 
beams is important to such diverse fields as high power 
coherent radiation development, collective iOIl 

acceleration, and plasma heating and confinement. The 
field of intense beams and some of their uses are 
presented in a book by R. B. Miller.1 The specific 
system studied in this paper involves an intense 
electron beam injected into an evacuated cylindrical 
drift tube through a localized source of ions. The 
ions are required in order to have beam propagation 
since 
Experimental ~~~~:~~2~3m~%T~~~e t~f~l:',nde~""op~:~~~~~" 
conditions effective beam propagation occurs to 
distances of 50 cm. 

A schematic of our system is shown in Fig. 1. An 
electron beam is injected with voltage V. and current 

I into a long drift tube of radius R . In order to 
ha?e electron beam propagation, ions ar% provided by a 
region immediately downstream of the injection 
surface. The properties of this localized source 
region are its formation rate S. (C/set) and potential 

"io at 
which the ions are c&ated. Of course, a 

charge neutralizing electron species is simultaneously 
formed. The ions and electrons are then able to 
propagate downstream with the ions initially at rest 
gaining kinetic energy as they fall through the 
potential difference V 
losing kinetic energy A" 

- V, and the beam electrons 
ue to the downstream potential 

depression V. This localized region can be formet by 
electron beam ionization of a neutral gas cloud or 

preformed by laser irradiation of a target. The 
combination of the injected electron beam and localized 
source is able to create the large localized space 
charge fields for the ions to gain the needed energy 
for beam propagation downstream. The downstream 

electron-ion beam is assumed to have a mean axial 
electron velocity 
velocity 

VZe = B,,c and a mean axial ion 
Vzi = Bsic. Each species has a temperature, 

T and Ti, 
chsrge 

and we assume that, in general, there is no 
neutrality and/or current neutrality, thus 

resulting in a self-electric field E and self- 
magnetic field B . The goal of thissrpaper is to 
interrelate all se system parameters. In the next 
section, a Vlasov particle distribution for each 
species is presented. The macroscopic quantities are 
derived and then radial force balance, along with 
continuity of current and conservation of single 
particle energy, is applied. Initial results from this 
model have been presented. 2,596 
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FIG. 1. Schematic of the model. 

Vlasov Distribution 

The starting point for our model is the assumption 
that the particle distribution function for each 
component of the downstream beam is a relativistic 
Maxwellian in the frame traveling at the fluid velocity 
of the component. In particular, we assume that in 
the frame traveling with the fluid velocity S .c, the 
distribution function for that component is sJ 

(P2C2 + m2c4)L12 
fj(x,E) = aj exp[- ----------J-,;;~) 

+ q "(j) 
1 3 (1) 

hl. 
J 

whe e a. is a 
.fd'pf. J 

normalization constant chose 
equals the local part c e density, 

4h 
V 

potential in that frame, and T 
j 

is the temperature of 
the component in that frame. 
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From the above particle distributions, we can show 
that the downstream radial force balance equation 
becomes in the laboratory frame 

dn.(r) 
qjnj(r)IEsr(r) - VzjBs+(r)l - kTj -+-- = 0 , (2) 

where the self-fields are given by 

Es,(r) = 5 lr[Zni(r*) - ne(r’)lr’dr’ 
0 0 

(3) 

and 

Bse(r) = y Jr[Zni(r')Vzi - ne(r')Vze]rcdr' , (4) 
0 
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and T and T. are 
laboratory f&e. 

the species temperature in the 
The solution to the above equations 

is (with z = 1) 

n n 

n,(r) = 
eo 

2 2 
= 22 n,(r) ) (5) 

[I + (r/a) I "i0 

where 

8~~ kTe(l - B;i) + kTi(1 - 8,,8ei) 
" =- 

eo e2a2 - Rzij2 
(6a) 

('ze 

8s kTe(1 - BzeBzi) + kTi(1 - 8;,) 
-0 

"io .2,2 ( 6b ) 

('ze - azi12 

which are the familiar Bennett pinch density 
profiles. We note that unlike8E;yious derivations of 
the Bennett pinch equilibrium, our derivation does 
not assume that the axial velocity of the particles is 
much greater than the transverse velocities. We note 
that in general the electrons are confined by the self- 
magnetic field and the ions by the self-electric 
field. The effective radius of each species is "a." 
These solutio"s in the been 
presented.'1 

limit Ti = 0 have 

We now apply to the downstream equilibrium two 
system constraints. Continuity of current for each 
species gives, for electrons 

I = 
ot 

(Rw/a)2 
x 

1 + (R"/a)* ' 

where I ot is the transmitted elect 
for ions 

Si = 

(Rw!aj2 
x 

1 + (Rw/a)2 * 

ron beam current , and 

)I 

(7) 

Conservation of single particle energy gives, 
electrons 

eV 
1 +o eV( 0) K3(ae) kT 

2 2, 

met 

'--=Yem- 2 

met 
2 e mec2 

(8) 

for 

(9) 

for ions 

eV. 
l+<--= e"(O) 7 K3'ai' kTi 

2 iiqq->p (10) 
RIG 

i 
TUC 

i i 

where 7. = (1 - 82.)-l/2 CI. = m.c2/y.kT j = le,il, 
V(0) is &he downst%am po;e"t!ial dvaludte~'o"-axis, and 

K3 and K2 are modified Bessel functions. 

The solutio" procedure for the above set of 
equations is as follows. 

and T. 
We assume that I t, Vo, Rw/a, 

are known and then solve for 
In :ddition, 

8 a sit 
we can compute the net c?r?:e"f" 

I 
8moc kT kTi (Rw/d2 

= 
net 8 -3 zi 

($++ 2 , (11) 
ze 1 + (Rw/a) 

and the fractional charge neutralization 

"i 
f =n= 

(1 - BZe)Ti + (1 - B,eB,i)Te 
(12) 

e (1 - 8Ze"zl)Ti + (1 - 6ze)T, * 

These quantities are plotted in the next section. 

Graphical Results and Discussion 

A set of typical results from our model is 
presented in Fig. 2. 

Rw/a = 10, and T 
Specifically, we have V, = 1 MV, 

= 0 and have plotted 8 

si and I 
parameter.ne 6' 

V?cJL and f versus T "EG v APA 
"e of the main features eof these':esults 

is that a temperature T* exists where Bzi = 0. For 
example, if I = 5 gA, 

I?t 
= 30 kA, TX05 250 keV. 

T* = 60 keV, and 
gcceptable equilibr:: 

ex st on for q < T*, since the region above T* 
requires the locafizedesource to be far downstream frog 
the injected electron beam. 
system is charge neutral, 

We note that at T:, the 
V(0) = 0 and f = 1.0, and the 

net current is due only to the electrons, I = I 
This point is the traditional Bennett state. "et We ?!Ad 
that temperatures just below this value provide system 
parameters that are very close to the calculated 
avalanche conditions of a localized gas cloud. This 
temperature T" is less than 250 keV for currents up to 
25 kA and a deode voltage of 1 MV. This temperature is 
reasonable for beam systems that have injected currents 
high enough so that virtual cathodes form. If we fix 
the electron current I and vary the electron voltage 

V 
0' 

we find that the t%nperature T* decreases. e 

In Fig. 3, we display the effects of finite ion 
temperature. We have plotted I and f versus T with 

Ti as a parameter. The other"ffxed system paraseters 
are V = 1 MV, I = 20 kA, and R /a = 10. The effects 
of figite ion tegierature are to Y ower the value of the 
critical temperature T,* and in turn eliminate the 
existence of a charge neutral state. That is, the 
state of no current neutralization (zero ion velocity) 
still occurs at T* 
negative charge. 

e, but this state requires a net 

We have found self-consistent downstream 
equilibria between electrons and ions with no applied 
axial magnetic field. The electrons are confined by 
the self-magnetic field and the ions by the self- 
electric field. In addition, the model calculates the 
required localized ion source properties necessary to 
achieve the equilibrium. The system is self- 
consistently derived from a relativistic Maxwellian 
particle distrtbution for each species. 
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Te--Electron Temperature (x105eV) 

FIG. 2. Normalized electron velocity, ion velocity, ion potentfal, ion production rate and net current, potentiai 
depression, and fractional charge neutralization versus electron temperature with electron current a parameter. 
Fixed parameters; V. = 1 MV, Rw/a = 10, and Ti = 0. 

FIG. 3. Normalized net current (a) and fractional 

51 2 charge neutralization (b) versus electron temperature 
with ion temperature a parameter. Fixed parameters; 

“0 
= 1 MV, Iot = 20 kA, and R,/a = 10. 
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