
Workstation Consoles for SLC*

J. BOGART, A. HUNTER, M. SULLENBERGER, S. KLEBAN, N. PHINNEY, N. SPE~%CER

Stanford Linear Accelerator Center

Stanford University, Stanford, California, 94305

ABSTRACT

A workstation console based on the DEC VAXstation GPx
has been developed for the SLC control system. The three video
monitors (touchpanel, color graphics display and terminal
screen) of the original SLC console are replaced by four windows
on the single workstation monitor, and standalone diagnostic
programs may run concurrently. In order to minimize software
effort and operator training, it was a design requirement that
higher-level control and applications code, particularly that in
the SLC Control Program, be identical whether the program
executed on the MicroVAX or on the host VAX. The code
for the graphics is necessarily different for the MicroVAX,
as is the lower-level code used to access resources resident
only in the host. A server program on the host acts as
intermediary between programs running on the workstation
and these resources.

Introduction

The original design for the SLC control system”’ included
two console types with very similar user interfaces. The console
normally used by operators, the Console On Wheels (COW)“’
consists of a touchpanel as the primary means of operator
input, a terminal for dialogue and messages, up to 8 knobs, and
a color monitor for plots and text displays. The other console
type, used primarily for program development and hardware
checkout, provides most of the functionality of the COW on a
simple terminal.

Although the COW includes an 8088 single-board computer
to manage graphics and input for the touchpanel, display
monitor, and knobs, the operator program itself (known as the
SCP, for SLC Control Program) runs as a process in the host
computer (a VAX 11/780 or VAX 11/785), along with other
identical programs and a variety of special purpose processes,
such as a database manager and a process to handle slow
feedback loops. The actual SCP program is the same whether
the console used is a COW or a terminal, but in the latter case
the SCP program handles its own touchpanel, display and knob
I/O.

By fall of 1985 two areas of possible improvement in
this architecture were identified. There was some concern
that the VAX CPU might become overloaded as the mode of
operation changed from the traditional “hands onn approach
to one dominated by substantial computation to model the
SLC’s behavior. At the same time, it seemed a worthwhile
investment to improve operator efficiency by modernizing the
user interface. A new workstation console type was proposed as
a possible solution to both problems. The SCP program would
run on the workstation CPU, thus reducing the computation
load on the host VAX (though increasing its I/O load). A
high-resolution color monitor with vendor-supplied windowing
software would provide the tools for the new user interface.

t Work supported by the Department of Energy, contract AC03-
76SF00515

Workstation Hardware and System Software

The hardware chosen was the DEC VAXstation GPx. It
includes a high-resolution (1024x864) color monitor, three-
button mouse, keyboard, MicroVAX II CPU with 7 megabytes
of memory, a 71 megabyte hard disk, and Ethernet. It
should be stressed that the selection of hardware was largely
conditioned by software requirements. The operating system
running on the workstation had to be compatible with the one
running on the host VAX (VAXJVMS) so that the applications
code contained in the SCP, written in VAX Fortran, and
making free use of the non-standard features in the compiler,
would carry over to the workstation with little or no change.
Also both operating system and graphics package had to
support a real-time application with asynchronous interrupts
from several sources. The compatibility requirement effectively
limited the choice of hardware to DEC products. Only
the VAXstation GPx, just going into beta test, met all the
additional requirements; we were fortunate in being chosen as
a test site. Two graphics system were available for the GPx:
DEC’s implementation of the Graphics Kernel System (GKS) 13’

and DEC’s own User Interface System (UIS)!” Primarily
because of the lack of support for asynchronous input, the
version of GKS (Hb.) available was ill-suited to our needs;
therefore all of our graphics was built on top of UIS.

Access to Resources

In the configuration of the SLC control computers (Fig. l),
the MicroVAX workstations (SLCul,. . . ,SLCun) are connected
to the host VAX computers (SLC, MCC) by an Ethernet
network, and the host computers are connected to the 8086
Microcomputers via a broadband communication line. A SCP
that is running on the workstation (remote SCP) must get
access to the same resources available to a SCP running on
the host computer (local SCP).

VhY lli780 SLC 1 vll:ax l”785 &ICC
(development I (pridur ICI-)

1 a/ .,/,e / \

Figure 1. Computer configuration for SLC Control System

797 CH2387-%‘8710000-0797 $ I .OO Q IEEE

© 1987 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1987

The resources needed by a SCP are:

l SLC database and other items in shared memory.

. SLC Micro Communication Network (SLCnet).

. Support processes (for example ERRTALK, which for-
wards error messages to those concerned).

. The actual code for the SCP process.

l Support files on the disk (for example a file containing
the source for the touchpanel displays).

l Printer.

The SLC database, SLCnet, and support processes could
not be removed from the host computer and it was not possible
to distribute these objects to all of the workstations, so a new
server process, the DNET Server, waswritten to run on the host
computer and act as proxy for access to these resources (Fig.
2). The SCP’s executable code and some of the other support
files could and in fact had to be duplicated and distributed
to each of the workstations, and a distribution system was
designed to provide this capability, described in a later section.
The printer on the host computer could be accessed directly
by the workstation across the DECnct (Ethernet) network, so
no additional software support was needed.

WorkstatIon Network ~_~-
IDECNET)

r
DECNET

!

Database 8
Global Sections

.

iI
‘,I.BIAZ

Figure 2. SCP communication paths.

The server system consists logically of two parts: one part,
a set of subroutines collectively known as the DMSG R.outines,
is on the workstation as part of the remote SCP; the other, the.
DNET Server, is a process on the host computer. Where a local
SCP has direct access to a particular resource, for example the
SLC database, the remote SCP has to use its DMSG Routines
to package its database request, send the request across the
DECnct to the DNET Server which then accesses the database,
packages and ships the results back to the remote SCP, where
the DMSG Routines unpack these results.

The DNET Server process has five parts.

l Background server to process synchronous requests to the
database and other global sections.

l Foreground server that serially (per workstation) handles
communication requests to the SLCnet or other host
process.

l SLCnet listener that asychronously handles return com-
munication from the SLCnet network.

l Mailbox listener that asychronously handles return
communication from the host processes.

l Error server that forwards error messages generated on
the host to the Error Server on the workstation for
display.

The DNET Server is implemented as a multi-threaded
process which handles all requests at software interrupt level.
This means that the Server is capable of simultaneously
executing many requests from different workstation and it also
guarantees that a long request from one workstation will not
appreciably delay a request from another. The number of
separate streams of activity (threads) within the Server grows
or shrinks as needed. A single thread forks into two when a new
action must be started and old threads are killed off when their
work is done. The Server maintains a separate set of variables
for each thread in order to keep each thread independent.

User Interface

The highest priority for the workstation project was to port
the SCP to the workstation. Although ultimately it might
be preferable to let the workstation user-interface diverge
substantially from the COW, initially coding time and operator
training time could be minimized by making a SCP on the
workstation look rather similar to one on a COW. Our aim was
to support all the standard utilities for writing to or reading
from the touchpanel, dialogle window, display or knobs in such
a way that applications code calling those routines could be
moved unchanged to the workstations. This was accomplished,
although the outward form of the display and touchpanel were
somewhat different and the outward form of the knobs was
radically diKerent from their realization on the other console
types. Figure 3 shows a workstation running a SCP with a
typical configuration of display, dialogue, touchpanel, and error
windows.

PAC 1987

The graphics software includes a generalized set of window-
ing utilities, suitable for other programs which might someday
run on the workstation, graphics and handling of asynchronous
input for the workstation touchpanel and knobs, graphics for
the error window, and a GPx device driver for the Unified
Graphics”’ package. Unified Graphics is a device-independent
graphics package developed at SLAC which supports, among
other devices, the COW monitor and touchpanel (output only)
and the hardcopy devices in use for text and graphics output
from the SCP. The Unified Graphics driver was not used for
the touchpanel because of the difficulties involved in integrat-
ing the Unified Graphics output with handling of the input,
but we were able to use the Unified Graphics driver for the
workstation display window. In this way all applications dis-
plays written for the COW carried over without change to the
workstation. The knob and touchpanel input handling depend
heavily on the support in UIS of asynchronous mouse input.

We could not simply use a terminal window for display
of error messages without losing the ability to provide certain
desirable features. Instead, errors are displayed in a separate
graphics window, with associated utilities to handle scrolling
and expansion of the window.

Software Distribution and Maintenance

Prior to the introduction of workstations, the SLC control
program had been implemented as a tree of shareable images,
both to conserve memory and to promote modularity. The
shareable images near the root of the tree contain graphics,
utility and communication procedures, while those higher up
the tree contain applications code. In implementing the
workstation software it was only necessary to diverge from the
existing software at the lower level. Hence some shareables
have a different version for the workstation and the host CPU;
the remainder have only a single version which executes on all
machines. The one difficslty with this arrangement is that
it further complicates the problem of software distribution,
which would have existed in any case as we moved from
an architecture with two similar machines (development and
production VAX) to one with half a dozen or more machines
of two different types. The solution took the form of a set
of VAXjVMS command procedures. One procedure is used to
create a new shareable image; if this image is one that has a
different version on the workstations then both versions are
created. Typically the programmer then tests the new image,
and if he is not satisfied he modifies his code and creates
another new image. Other procedures distribute (i.e., copy
and install) the new shareable to the appropriate CPU’s. In all
cases the programmer invoking the procedure merely supplies
the name of the shareable to be created or distributed; he
need not be aware of how many files are in fact created or
distributed, or where they go.

Each workstation when restarted checks its list of shareable
images against the master list on the SLC computer, getting
any new released images it lacks. There are also several disk
support files that are used by the SCP and kept locally on
each workstation. The distribution for these files is done with
command procedures similar to the ones used for the shareable
images.

Conclusions

Workstation consoles were integrated into the control
system to reduce the CPU load on the main host and to provide
a more attractive user interface. Another implicit goal was to
keep a high degree of compatibility between the SCP program
running on the workstation and the version running on the
host VAX. In the time available to us we were able to move
the SCP (and, with little or no extra work, several stand-alone
diagnostic programs) to the workstation. Except for certain
classes of utility routines, the workstation SCP and host VAX
SCP are identical. We were able to make some improvements
in the graphical interface, most notably in the touchpanel and
in giving error messages their own window, separate from the
dialogue area. The latter feature has proved so popular that
the COW interface has been similarly modified.

The design of the DNET Server and the DMSG protocol
were appealing because of their generality. It was clear that
any resources resident on the host could be provided to a
workstation process in this manner, and that any we left
out initially could be added later with a small incremental
programming effort. However, that same generality implies a
certain lack of optimization. All resources are treated equally,
but in fact different resources are used differently and in
different amounts by the SCP. The SCP, at least as presently
used, is not very CPU intensive; it is dependent on SLCnet
and especially on database access. The latter, which takes
negligible resources for a process running on the host VAX, is
quite expensive for both the workstation and the host CPU
when the process is running on a workstation. Plans are now

101 underway to distribute the database to all workstations.

Acknowledgments

The integration of the workstation console into the SLC
control system could not have been accomplished without help
and advice from many people. We would particularly like to
thank R. Beach for writing the Unified Graphics GPx driver
and R. K. Jobe for help in the design of the workstation knobs.

1.

2.

3.

4.

5.

6.

REFERENCES

N. Phinney,“Report on the SLC Control System; IEEE
Trans. Nucl. Sci. NS-32, 2117 (Oct. 1985).

E. Linstadt, “Dissecting the COW: IEEE Trans. Rrucl.
Sci. NS-32, 2115 (Oct. 1985).

“VAX GKS IIb, Software Reference Guide’,’ Digital
Equipment Corporation, Maynard, Massachusetts (Mar.
1986)

“MicroVMS Workstation Graphics Programming Guide:
Digital Equipment Corporation, Maynard, Massachu-
setts (Mar. 1986)

R. C. Beach, “The Unified Graphics System for Fortran-
77: Programming Manual:’ SLAC, CGTM-203 Rev. 2
(Nov. 1985)

M. Huffer, “Distributed Database for the SLC Control
System Design Proposal:’ Internal Document (Feb. 1987)

799

PAC 1987

