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Abstract 

We have extended the Los Alamos &son Physics 
Facility (LAMPF) control system software to allow 
uniform access to data and controls throughout the 
control system network. ‘Iwo aspects of this work are 
discussed here. Of primary interest is the use of 
standard interfaces and standard messages to allow 
uniform and easily expandable inter-node 
communication. A locally designed remote procedure 
call orotocol will be described. of further interest 
is the use of distributed databases to allow maximal 
hardware independence in the controls software. 
Application programs use local partial copies of the 
global device description database to resolve symbolic 
device names. 

Introduction 

The LAMPF computer control system upgrade project 
reached an important milestone on January 2, 1987, 
with the retirement of the original Systems 
Engineering Laboratory 35-840 control computer. 
Having replaced the original central computer controls 
software with new software running on a VAX 780, Ire 
turned our attention to upgrading the remote computer 
network which provides dedicated data acquisition and 
control tasks for the central control computer. At 
the Second International Workshop on Accelerator 
Control Systems at Los Alamos in Cktober, 1985, we 
discussed plans for this upgrade (see reference [ll). 

Cur goals for the network upgrade included 
extending -the data acquisition hardware independence 
and flexibilitv achieved throueh the control VAX 
software, and providing a simple”and straight forward 
way to distribute application program functionality 
across several network nodes. 

In this paper we discuss the additions in 
hardware and software that have been made to the LAMPF 
control system network. The first part of the paper 
describes the upgraded controls network organization. 
‘Ihe next part discusses control system extensions to 
provide uniform data access on and between remote 
network nodes. The final part describes the remote 
procedure call interface we implemented to allow 
simplified communication between application programs 
running on different network nodes. 

LAt@F Control System Network Organization ---- 

The upgraded portions of the LAMJF control system 
network are shown in figure 1. The central control 
computers (labeled PROD and DEVEL) are Digital 
Equipment Corporation (DEC) VAX 780s connected to the 
accelerator operators’ consoles in the central control 
room. Usually one VAX is used for production and one 
for software development. The two control VAXes are 
part of a cluster sharing the same set of cluster 
disks. 

An Ethernet cable running the length of the 
accelerator and extending on into the experimental 
areas connects several DEC micro-VAXes used for 

dedicated data acquisition and control tasks. Each of 
these micro-VAXes is directly connected to one or more 
CAMAC crates giving access to real-world data. In 
several cases (notably IC and IS’TS) local operator 
consoles are attached to the micro-VAXes to support 
independent hardware development and to allow local 
monitoring of the ion sources. 

The central control VAXes run the vAx/vbE 
operating system and provide access to a multitude of 
application . programs _ through standard accelerator 
onerators’ consoles. Since the IC and ISTS nodes 
needed standard consoles also, we decided to use the 
micro-VMS operating system on them to allow the use of 
existing LAMPF software. We had no trouble running 
the needed VM3 software -- both device drivers and 
application programs -- on the micro-VI6 systems. In 
several cases, environment al considerations and 
run-t ime response requirements ruled out the 
possibility of using disk-based operating systems such 
as VEIS. For these systems we implemented our software 
in the VAXELN environment. VAXELN is a system for 
building memory-resident, real-time systems which can 
be down-loaded (and debugged) over Ethernet. 

Application programs which supply the interface 
to the accelerator operators run primarily on the 
central control VAXes. ‘Ihrough references to symbolic 
device names they can acquire data either locally or 
from remote nodes -- micro-VkS or VAXEW -- across the 
network. Application programs running in the remote 
nodes use symbolic device names to access locally 
connected data. 

We chose to use DE&et on our Ethernet LAN 
because of the large amount of software support 
available for it and because our time-critical tasks 
are concentrated in single nodes -- not distributed 
across the network. Since our network includes more 
than one operating system, it made sense to let DE&et 
handle the basic communications tasks of message 
delivery, routing, and error handling. 
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Figure 1 - LAMPF Control System Network 
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LAE*PF Control System Data f+ccess Software -- -- 

‘Ihe data access software on the central control 
computers was designed to provide a uniform interface 
for application programs. The interface provided a 
flexible and powerful mechanism for application 
programs to acquire data and issue commands in a 
hardware-independent manner. In particular, 
application programs were required to access data only 
through symbolic device names. ‘Ihe general properties 
of this software have been described elsewhere (see 
references [z], [3], and [41. 

As part of the controls network upgrade, we 
wished to provide this same power and hardware 
independence to applications programs running on both 
the central control computers and on the remote 
network nodes. 

Figure 2 shows the connections which exist 
between the various parts of the LAMPF data access 
software. Each node has a device description database 
which is used (implicitly) by application programs to 
resolve references to symbolic device names. Using 
information in the database, the data access software 
decides whether the device reference is to be handled 
locally or on a remote node. If the device is local, 
the data access software talks to the local CAMAC 
hardware. Otherwise, the data access software 
communicates over the .network with a CAMAC server 
which. in turn. drives the CAMAC hardware. The 
comm&cation ma; also be established with a remote 
data server which itself can make references to 
locally defined devices via symbolic names. 
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Figure 2 - I&a Access Software 

Distributed Database khintenance 

The LAElPF device description (Device Table) 
database actually exists in two forms, not unlike the 
existence of a Pascal procedure in both a source and 
an object form. The “source” form of the database is 
an ASCII database maintained with a commercial 
database management system (DRS, supplied by Advanced 
Data Management, Inc _ 1. This source database exists 
and is maintained only on the cluster disks attached 
to the central control computers. 

‘Ike “object ” or run-time form of the device 
description database contains translated information 
derived from the source database. This technique 

allows rapid run-time access to the device information 
at the expense of having programs that must translate 
between the two forms of the database. 

A version (full or partial) of the run-time 
device description database exists on each network 
node requiring access to data and controls. ‘The 
control computers each have a run-time database that 
contains a description of every device in the control 
system. The run-time database in a remote node 
contains information only on devices immediately 
accessible to that node. 

Q-I VK and micro-‘&6 nodes, the run-time database 
is implemented as a W&3 global section, which allows 
multi-process access to the device information and 
uses the Vk!S naginn mechanism to provide efficient 
input and output.- &I VAXELN nodes, the run-time 
database is imulemented as an ELN “area” which allows 
multi-job and ‘multi-process access to the device 
information. All E!LN areas are memory resident, so 
there is no concern with input/output efficiency. 

‘Ihe source version of the device description 
database is updated using tools supplied by the 
commercial database management system. We have 
developed a set of update and report programs. ‘lhe 
update programs use the full-screen update facilities 
of the database management system. 

The run-time databases on the central control 
VAXes are updated automatically whenever the source 
database is modif ied. When a device which is defined 
on a remote micro-% node is updated, an incremental 
update of the remote run-time database is also 
automatically performed . (Xlrrently, run-time 
databases in VAXELN nodes can only be modified by 
reloading the entire VAXELN system across the network. 
We hope to be able to perform incremental updates of 
VAXELN run-time databases in the near future. 

It is difficult to keep distributed run-time 
databases in agreement. Automatic update of the 
remote databases in parallel with the central control 
VAX database is an attempt to deal with this problem. 
However, if a remote computer is not available when a 
relvant update is made, we must have a mechanism for 
bringing the databases into agreement when that node 
next becomes available. Our current solution is 
administrative; we are seeking automated solutions. 

Remote Procedure Call System -- 

‘lhe remote procedure call (RFC) model for 
communication in distributed systems provides a 
mechanism whereby a process running on one node can 
“call”, using standard procedure calling semantics, 
another routine that executes on a different machine. 
‘lhe advantages of RPCS include the simplicity of the 
calling and listening program interfaces. ‘Ihe details 
of link handling, message passing, error rec.overy, and 
operating system peculiarities are hidden from the 
user programs. 

We implemented a remote procedure call interface 
as the standard inter-node communication mechanism in 
the upgraded LAMFF control system network. 

lhe RFC system structure is indicated in figure 3 
for the case. of a synchronous call with no errors. 
(7he LAMJF RFC interface also supports asynchronous 
calls and does extensive error handling. See 
reference [S] for more details.) 
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The RPC interface is divided logically into a 
“caller’s interface” and a “server’s interface.” (h 
the caller’s node, the calling process is linked to a 
stub which has the same name and the same set of 
parameters as the remote procedure. ‘Ihe stub routine 
passes its parameters, along with some additional 
information, to the RPC interface remote call routine. 
If the call is synchronous, the calling process is 
blocked until the remote procedure completes. When 
the remote procedure completes, the reply message is 
unpacked by the RPC interface process-reply routine, 
which writes the values of output parameters into the 
caller’s variables. 
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Figure 3 - Remote Procedure Call System Structure 

Gn the server’s node, remote procedures are 
contained in special processes called “server 
processes. ” The server process in figure 3 listens for 
call messages, determines which procedure should be 
invoked, and passes the address of that procedure, 
along with the call message, to the RPC interface 
procedure-call routine. This routine re-creates the 
argument list from information in the call message and 
then calls the specified procedure. When the 
procedure returns, the output parameters are packed 
into a reply message which is sent back to the caller 
process. 

To bind a caller to a remote procedure, the RPC 
interface must know the name of the server process 
containing the remote procedure, the node on which the 
server is running, and the name of the procedure to 
call. ‘Ihe node and server names are used to create a 
DE&et ‘logical link” between the calling process and 
the server process. The procedure name is translated 
into a “procedure id” value and sent to the server 
process in the call message. By convention, procedure 
id zero is the id of a diagnostic echo routine 
provided by each server’s RPC interface. 

Whenever possible the binding information is 
provided by the stub procedure. In some cases, 
however, part of this information must be supplied by 
the caller. For example, if the same service is 
available on more than one node, or if the same 
procedure is available in more than one server, then 
the caller must supply the node and/or the server 
name. 

‘Ihe RPC interface is responsible for handling 
errors detected by the remote procedure, by the RPC 
interface itself, and by DE@et. If an error is 
detected, the RPC interface returns a status or raises 
an exception in the caller’s process and, in some 
cases, shuts down the DE&et link. 

RPC stub routines are not automatically generated 
in our system, but we have tried to make stub 
generation as easy as possible. In most cases, a stub 
routine needs only to supply a description of the 
parameters to be passed and call the appropriate RPC 
interface routines. 

As indicated in figure 2, the LAMPF data access 
software uses remote procedure calls to make requests 
to CAM4C servers on remote nodes. The RPC interface 
is also used to communicate with a general ‘data 
access serverl’which handles requests for data from 
devices addressed by their symbolic device names. 

Conclusions 

the 
We feel we have achieved our goals of extending 

data acquisition hardware independence and 
flexibility to much of the LAVPF control system 
network. We have found that the update of distributed 
run-time databases is a manageable problem. 

We are currently in the process of redesigning 
several large application programs which have portions 
running on several network nodes. ‘lhe RPC paradigm is 
proving to be very useful in producing well-structured 
systems of programs that are distributed across 
several network nodes. 

Timing tests reported in reference [s] indicate 
that the LAI@F RPC interface message exchanges add 
approximately 20% to the DE(fiet times. We find this 
to be an acceptable price to pay for the power and 
flexibility provided by remote procedure calls. 

In the near future we hope to replace all of the 
aging PDP-11 computers in the control system network. 
We also plan to provide limited access to data between 
remote nodes using an RPC interface. 
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