
DISTRIBUTED DATA ACCESS IN ME LAM’F CONTROL SYSTEM*

S. C. Schaller and E. A. Bjorklund, MP-1, W H810
Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

We have extended the Los Alamos &son Physics
Facility (LAMPF) control system software to allow
uniform access to data and controls throughout the
control system network. ‘Iwo aspects of this work are
discussed here. Of primary interest is the use of
standard interfaces and standard messages to allow
uniform and easily expandable inter-node
communication. A locally designed remote procedure
call orotocol will be described. of further interest
is the use of distributed databases to allow maximal
hardware independence in the controls software.
Application programs use local partial copies of the
global device description database to resolve symbolic
device names.

Introduction

The LAMPF computer control system upgrade project
reached an important milestone on January 2, 1987,
with the retirement of the original Systems
Engineering Laboratory 35-840 control computer.
Having replaced the original central computer controls
software with new software running on a VAX 780, Ire
turned our attention to upgrading the remote computer
network which provides dedicated data acquisition and
control tasks for the central control computer. At
the Second International Workshop on Accelerator
Control Systems at Los Alamos in Cktober, 1985, we
discussed plans for this upgrade (see reference [ll).

Cur goals for the network upgrade included
extending -the data acquisition hardware independence
and flexibilitv achieved throueh the control VAX
software, and providing a simple”and straight forward
way to distribute application program functionality
across several network nodes.

In this paper we discuss the additions in
hardware and software that have been made to the LAMPF
control system network. The first part of the paper
describes the upgraded controls network organization.
‘Ihe next part discusses control system extensions to
provide uniform data access on and between remote
network nodes. The final part describes the remote
procedure call interface we implemented to allow
simplified communication between application programs
running on different network nodes.

LAt@F Control System Network Organization ----

The upgraded portions of the LAMJF control system
network are shown in figure 1. The central control
computers (labeled PROD and DEVEL) are Digital
Equipment Corporation (DEC) VAX 780s connected to the
accelerator operators’ consoles in the central control
room. Usually one VAX is used for production and one
for software development. The two control VAXes are
part of a cluster sharing the same set of cluster
disks.

An Ethernet cable running the length of the
accelerator and extending on into the experimental
areas connects several DEC micro-VAXes used for

dedicated data acquisition and control tasks. Each of
these micro-VAXes is directly connected to one or more
CAMAC crates giving access to real-world data. In
several cases (notably IC and IS’TS) local operator
consoles are attached to the micro-VAXes to support
independent hardware development and to allow local
monitoring of the ion sources.

The central control VAXes run the vAx/vbE
operating system and provide access to a multitude of
application . programs _ through standard accelerator
onerators’ consoles. Since the IC and ISTS nodes
needed standard consoles also, we decided to use the
micro-VMS operating system on them to allow the use of
existing LAMPF software. We had no trouble running
the needed VM3 software -- both device drivers and
application programs -- on the micro-VI6 systems. In
several cases, environment al considerations and
run-t ime response requirements ruled out the
possibility of using disk-based operating systems such
as VEIS. For these systems we implemented our software
in the VAXELN environment. VAXELN is a system for
building memory-resident, real-time systems which can
be down-loaded (and debugged) over Ethernet.

Application programs which supply the interface
to the accelerator operators run primarily on the
central control VAXes. ‘Ihrough references to symbolic
device names they can acquire data either locally or
from remote nodes -- micro-VkS or VAXEW -- across the
network. Application programs running in the remote
nodes use symbolic device names to access locally
connected data.

We chose to use DE&et on our Ethernet LAN
because of the large amount of software support
available for it and because our time-critical tasks
are concentrated in single nodes -- not distributed
across the network. Since our network includes more
than one operating system, it made sense to let DE&et
handle the basic communications tasks of message
delivery, routing, and error handling.

+I I I I

Figure 1 - LAMPF Control System Network

*Work supported by the US Department of Energy

745 CH~3X7-9iX7/(KWM)-074.i % I .Oo GZ tEEE

© 1987 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1987

LAE*PF Control System Data f+ccess Software -- --

‘Ihe data access software on the central control
computers was designed to provide a uniform interface
for application programs. The interface provided a
flexible and powerful mechanism for application
programs to acquire data and issue commands in a
hardware-independent manner. In particular,
application programs were required to access data only
through symbolic device names. ‘Ihe general properties
of this software have been described elsewhere (see
references [z], [3], and [41.

As part of the controls network upgrade, we
wished to provide this same power and hardware
independence to applications programs running on both
the central control computers and on the remote
network nodes.

Figure 2 shows the connections which exist
between the various parts of the LAMPF data access
software. Each node has a device description database
which is used (implicitly) by application programs to
resolve references to symbolic device names. Using
information in the database, the data access software
decides whether the device reference is to be handled
locally or on a remote node. If the device is local,
the data access software talks to the local CAMAC
hardware. Otherwise, the data access software
communicates over the .network with a CAMAC server
which. in turn. drives the CAMAC hardware. The
comm&cation ma; also be established with a remote
data server which itself can make references to
locally defined devices via symbolic names.

Cnntl”, V&X ~“NSj

‘“‘,E”‘““““: 1

;; I

aemotc YRX (““MS nr 6T.Nl

-7

,DB ““date 7Fv] /

1 1 p-zpp$ig;+

I I i --.- > ChMAC SeLver L-F& IL-------------------J

Figure 2 - I&a Access Software

Distributed Database khintenance

The LAElPF device description (Device Table)
database actually exists in two forms, not unlike the
existence of a Pascal procedure in both a source and
an object form. The “source” form of the database is
an ASCII database maintained with a commercial
database management system (DRS, supplied by Advanced
Data Management, Inc _ 1. This source database exists
and is maintained only on the cluster disks attached
to the central control computers.

‘Ike “object ” or run-time form of the device
description database contains translated information
derived from the source database. This technique

allows rapid run-time access to the device information
at the expense of having programs that must translate
between the two forms of the database.

A version (full or partial) of the run-time
device description database exists on each network
node requiring access to data and controls. ‘The
control computers each have a run-time database that
contains a description of every device in the control
system. The run-time database in a remote node
contains information only on devices immediately
accessible to that node.

Q-I VK and micro-‘&6 nodes, the run-time database
is implemented as a W&3 global section, which allows
multi-process access to the device information and
uses the Vk!S naginn mechanism to provide efficient
input and output.- &I VAXELN nodes, the run-time
database is imulemented as an ELN “area” which allows
multi-job and ‘multi-process access to the device
information. All E!LN areas are memory resident, so
there is no concern with input/output efficiency.

‘Ihe source version of the device description
database is updated using tools supplied by the
commercial database management system. We have
developed a set of update and report programs. ‘lhe
update programs use the full-screen update facilities
of the database management system.

The run-time databases on the central control
VAXes are updated automatically whenever the source
database is modif ied. When a device which is defined
on a remote micro-% node is updated, an incremental
update of the remote run-time database is also
automatically performed . (Xlrrently, run-time
databases in VAXELN nodes can only be modified by
reloading the entire VAXELN system across the network.
We hope to be able to perform incremental updates of
VAXELN run-time databases in the near future.

It is difficult to keep distributed run-time
databases in agreement. Automatic update of the
remote databases in parallel with the central control
VAX database is an attempt to deal with this problem.
However, if a remote computer is not available when a
relvant update is made, we must have a mechanism for
bringing the databases into agreement when that node
next becomes available. Our current solution is
administrative; we are seeking automated solutions.

Remote Procedure Call System --

‘lhe remote procedure call (RFC) model for
communication in distributed systems provides a
mechanism whereby a process running on one node can
“call”, using standard procedure calling semantics,
another routine that executes on a different machine.
‘lhe advantages of RPCS include the simplicity of the
calling and listening program interfaces. ‘Ihe details
of link handling, message passing, error rec.overy, and
operating system peculiarities are hidden from the
user programs.

We implemented a remote procedure call interface
as the standard inter-node communication mechanism in
the upgraded LAMFF control system network.

lhe RFC system structure is indicated in figure 3
for the case. of a synchronous call with no errors.
(7he LAMJF RFC interface also supports asynchronous
calls and does extensive error handling. See
reference [S] for more details.)

PAC 1987

The RPC interface is divided logically into a
“caller’s interface” and a “server’s interface.” (h
the caller’s node, the calling process is linked to a
stub which has the same name and the same set of
parameters as the remote procedure. ‘Ihe stub routine
passes its parameters, along with some additional
information, to the RPC interface remote call routine.
If the call is synchronous, the calling process is
blocked until the remote procedure completes. When
the remote procedure completes, the reply message is
unpacked by the RPC interface process-reply routine,
which writes the values of output parameters into the
caller’s variables.

ScrYcr’s Nod-

:.x11 YSij
~ ---.-.- ,,.,,,;-,_;zy

r\r--
RPC

Reply rsg , icall
- ~~j_~.iil(.U;lne,

I 1 ‘--I
Xcmote Proceciule

Figure 3 - Remote Procedure Call System Structure

Gn the server’s node, remote procedures are
contained in special processes called “server
processes. ” The server process in figure 3 listens for
call messages, determines which procedure should be
invoked, and passes the address of that procedure,
along with the call message, to the RPC interface
procedure-call routine. This routine re-creates the
argument list from information in the call message and
then calls the specified procedure. When the
procedure returns, the output parameters are packed
into a reply message which is sent back to the caller
process.

To bind a caller to a remote procedure, the RPC
interface must know the name of the server process
containing the remote procedure, the node on which the
server is running, and the name of the procedure to
call. ‘Ihe node and server names are used to create a
DE&et ‘logical link” between the calling process and
the server process. The procedure name is translated
into a “procedure id” value and sent to the server
process in the call message. By convention, procedure
id zero is the id of a diagnostic echo routine
provided by each server’s RPC interface.

Whenever possible the binding information is
provided by the stub procedure. In some cases,
however, part of this information must be supplied by
the caller. For example, if the same service is
available on more than one node, or if the same
procedure is available in more than one server, then
the caller must supply the node and/or the server
name.

‘Ihe RPC interface is responsible for handling
errors detected by the remote procedure, by the RPC
interface itself, and by DE@et. If an error is
detected, the RPC interface returns a status or raises
an exception in the caller’s process and, in some
cases, shuts down the DE&et link.

RPC stub routines are not automatically generated
in our system, but we have tried to make stub
generation as easy as possible. In most cases, a stub
routine needs only to supply a description of the
parameters to be passed and call the appropriate RPC
interface routines.

As indicated in figure 2, the LAMPF data access
software uses remote procedure calls to make requests
to CAM4C servers on remote nodes. The RPC interface
is also used to communicate with a general ‘data
access serverl’which handles requests for data from
devices addressed by their symbolic device names.

Conclusions

the
We feel we have achieved our goals of extending

data acquisition hardware independence and
flexibility to much of the LAVPF control system
network. We have found that the update of distributed
run-time databases is a manageable problem.

We are currently in the process of redesigning
several large application programs which have portions
running on several network nodes. ‘lhe RPC paradigm is
proving to be very useful in producing well-structured
systems of programs that are distributed across
several network nodes.

Timing tests reported in reference [s] indicate
that the LAI@F RPC interface message exchanges add
approximately 20% to the DE(fiet times. We find this
to be an acceptable price to pay for the power and
flexibility provided by remote procedure calls.

In the near future we hope to replace all of the
aging PDP-11 computers in the control system network.
We also plan to provide limited access to data between
remote nodes using an RPC interface.

Acknowledgments

We would like to thank Gary Carr, Jim Harrison,
and Pat Rose.

References

[ll SK. Brown et al, kcl. Instr. and Meth., A247,

I21
pp. 122-125 (19861.

S.C. Schaller and P.A. Rose, IEEE Trans. on
Nucl. Sci.,

r31
E-30, pp. 2308-2310,(198X- -

S.C.er and J.K. Corley, Proceedings of

r41
Trans. on Nucl

[Sl =. -

. Sci., NS-32, pp. 2080-2m

E. Blorklund and S.C. Schaller. Proceedines of
the- Digit al
ZZiety,ng - -’

747

PAC 1987

