
CONTROL OF STOCHASTIC COOLING &RF SYSTEMS
USING INTERACTIVE GRAPHICS

Glenn Mayer, Stephen Beck, Ralph Pasquinelli

Fermi National Accelerator Laboratory’
P.O. Box 500 Batavia, Illinois 60510

The anti-proton source at Fermilab uses an interactive
color graphics system to control the stochastic cooling and RF
systems. This general purpose graphic control system provides an
intuitive, powerful, and flexible person machine interface to the
accelerator systems. The graphics interpreter translates user
generated files which specify the location and type of symbol, and
displays a live schematic of an accelerator system on a color
graphics monitor. The system provides both static symbols, which
can be used to generate a schematic, and dynamic symbols which
display real time data and provide control. Experience has shown
that this method of control has many advantages over simple text
displays and has the flexibility necessary to be a an important tool in
accelerator control.

1 Operated by University Research Association Inc. under Contract
with the United States Department of Energy.

STOCHASTIC

In October of 1983, the stochastic cooling systems for
the anti-proton source were being built and the control system
interface was being designed. Since the stochastic cooling systems
were clearly destined to be complex, the user interface was closely
examined. The standard interface in use at that time was the
parameter page. This page displayed up to 20 lines of data at one
time, Each line consisted of an eight character device name, a forty
character device description, and the value associated with that
device. Device parameters could also be controlled from the
parameter page. If more that 20 devices existed in a system, the
system was displayed using multiple pages. The parameter page
worked well when controlling a small number of devices or a large
number of similar devices. For example, to control a large number
of magnets that need to be all on or all off, you could quickly page
through all of the magnets and insure that they were all in the
appropriate state. The stochastic cooling systems would have many

CcmLIt4G
STACK TAIL FILTERS

12-MAR-87 89: 12: 13

FILTER t 1
Fo=CORE-6. ;HZ

m

I EJ
32-2

IN

jTJ-

GO TO ST

GO TO HL

RETURN

COPY TO CP

COPY TO SS

RETURN TO TV

CH2387-9/87/0000-0738 $1.00 8 IEEE

Figure 1 Typical Graphic Display

738

© 1987 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1987

different types of devices, multi-pole switches, amplifiers, transfer
switches, attenuators, trombone lines, phase shifters, etc. Not only
were the interconnections between these devices going to be
complex, but no two systems would be alike. It was feared that no
one would be able to operate the system without a schematic in front
of them. It was decided to implement some form of graphic
interface similar to the Apple Lisa2.

The primary difference between the interface that the
Apple Macintosh2 (the current Apple version of the Lisa) uses and a
“typical” computer, is that the Macintosh interface is “intuitive”.
That is to say, the actions necessary to perform common operations
are immediately obvious to a beginning user. The classic example
of this is file deletion. If a beginning user is presented with a file
which needs to be deleted and a picture of a trashcan, his first
thought would be to move the file into the trashcan. The beauty of
the Macintosh interface is that he would be right. There is no other
logical alternative, therefore the user will select the appropriate
course of action. Contrast this to a more conventional system which
would require typing;

“DELETE,filename” or
“REMOVE filename” or
“PURGE, filename” or even
“DELETE, filename/OPTION=EXPUNGE”

In order to design an interface which is intuitive, one
must first find a body of knowledge that all of the potential users of
the system are likely to already possess. One then must design the
system such that the assumed body of knowledge is sufficient for a
new user to be able to operate the system without extensive training.
For example, the Apple Lisa was targeted for the office
environment. The potential users were familiar with the office
environment, i.e. documents go into file folders, folders go into tile
cabinets, new things appear in the IN basket, garbage goes into the
trashcan, etc. The Lisa interface used a “desktop metaphor” for all
operations thereby allowing people to use existing knowledge
instead of requiring them to learn new concepts.

Schematic Metapha

The stochastic cooling systems are controlled by
physicists, engineers, and opera&,-who are all familiar with
schematic drawings. If the stochastic cooling interface looks like a
schematic drawingthen people will be able to&cognize components
without needing to know that “AL” in the 5th and 6th character
positions of the name means that the device is an amplifier. They
will know that all of the triangular shaped things are amplifiers from
past knowledge and experience.

The final design for the stochastic cooling controls
interface was a graphic image of the system that looked similar to the
schematics from which the system was built (See Figurel). The
appearance of a device reflects the devices current state in the real
world, i.e. a switch which is schematically represented as a bar
connecting two circles has the bar actually connecting the circles if
the real switch is closed, or the bar tilted up if the real switch is
open. Color is also used to indicate the state of a device. A device in
its’ operational mode is shown in green, standby mode is magenta,
and a fault mode is shown in red. Analog devices have their current
value displayed below the device. If the analog value if greater than
a preset maximum, the value is displayed in red. If a user selects a
device by pointing at it, additional information is provided about that
device. An “interrupt” button is provided that allows the user to
control devices, for example, if the user points at a switch and then
presses the intermpt button, the switch will go from its current state
to the opposite state. A knob is provided for changing analog
values. If the user points to an analog device and turns the knob,
the value will changed accordingly. Analog values may also be
typed in.

The total number of devices in most systems exceeds
what can be reasonably put on the 14 in. color graphics screen. In
order to display all data in an organized manner, a hierarchically
organized set of graphic displays is created for each system. The
first level displays the key components of the system. For any
complex components, the user may interrupt inside the component
and it will expand to a new, more detailed view of that one
component. For example, the stack tail momentum system has a
box labeled “FILTER”, which is the cryogenic notch filter system.
If the user interrupts inside a filter box, it will expand to show all of
components of the filter, such as trombone lines, transfer switches,
helium levels, etc. The graphics may be nested to any number of
levels. The current stochastic cooling graphics have up to four
levels of abstraction.

The interactive graphics system is implemented on the
standard ACNET (Accelerator Control NETwork) console. This
console provides the following resources;

Alphanumeric color TV screen
color zraohics screen (512x640. 8 colors)
Black ‘;ld white graph& screen’
Keyboard

’

Trackball with interrupt button
Knob

The schematic is displayed on the color graphics screen.
The alphanumeric display is used to display error messages and
additional information abut a selected device. The trackball is used
to move the cursor on the graphics display.

The graphics system is composed of three major
components: the graphic definition file, the symbol definition
routines, and the graphics interpreter (See Figure 2).

Symbol
GRAFWCS 4-J

Definition

Routines v

Figure 2 Graphics System Structure

.
(&&ic Defiw

The graphic definition file (GDF) is an ASCII file that is
created bv the user for each eranhic image. Each line in the file
specifies-one symbol on the screen, fiach line has 8 integer
parameters and one 8 character alphanumeric parameter. The first
integer parameter is always a symbol number. All of the other
par&et&s are interpreted &o&g to the symbol definition for that
symbol. A line beginning with a “!” is a comment and is ignored by
the interpreter. The following is a short example of a GDF.

! A SAMPLE GDF FILE
!1112222333344445555666677778888-
! THIS LINE PRINTS THE TEXT HELLO
! AT COORDINATES X=lOO,Y=200 IN GREEN(2)
! IN THE STANDARD SIZE (1)

5 100 200 2 1 5 HELLO

* TM Apple Computer Inc. ! THIS PUTS THE VALUE OF A:IBEAM UNDER HELLO
11 100 180 A:IBEAM

PAC 1987

A typical graphic definition file is about 300-500 lines
long. The GDF file can be entered using a text editor, in fact the
first stochastic cooling graphics were all entered using a text editor.
For a far more detailed description of GDF files see reference [I].
Since diit entry of text is a tiine consuming process, an interactive
graohic editor was develoeed. This editor runs on a ACNET
Eon‘sole and allows the us& to move, enter and delete symbols
directly. See reference [2] for more information about the intfxactive
editor.

For every type of symbol that appears on the graphic, a
svmbol definition must exist. A svmbol definition consists of three
Gbroutines. The INI routine defiles the necessary initialization for
that symbol type. This usually consists of drawing the symbols
initial shape on the graphics screen and requesting that the
appropriate data be sent to the console’s data pool. The PER routine
defines the proper procedure for refreshing the symbol. This
usually consists of getting data from the datapool and drawing the
appropriate symbol over the last symbol. The KBI routine defines
thd a&ion that occurs when the &er presses the interrupt button
while the svmbol is selected. This action is differs widely for
different simbols. For a switch symbol, the current state is
obtained from the data pool and a command which will set it to the
opposite state is sent out.

There are 20 words of global data area allocated to each
symbol. This area is used differently by each symbol. The types of
things stored are: symbol number, lower left and upper right hand
comer of the valid interrupt area of the symbol, pointers to the live
data in the datapool, pointers to the comet data scaling routines, etc.
Each of the three symbol routines has access to this global data.

A set of 30 symbol definitions is linked to the graphics
interpreter to form a version of the interactive graphics system. For
example, the stochastic cooling version of the graphics system is
composed of 15 general purpose symbol types, and 15 symbol
types unique to stochastic cooling. Memory limitations of the
console CPU mevent all of the symbols from being linked into one
program. The-symbol number (i-30) is defined s link time. For
examole. if the tmmbone line svmbol is the 22nd svmbol linked into
the s;st,, it becomes symbol 22. See reference-[31 for details of
symbol definition.

The decision to use three subroutines to define a symbol
type has proved to be a good one. Many new symbols have been
designed and implemented since the original system has been
released. There has never been a problem or limitation which
prevented a person from doing exactly what they wanted to do. One
symbol designer created a water pump symbol that regularly moved
the impeller position a fraction of a turn if the pump was on. The
result was an animated symbol.

A general purpose library of symbols exists so that
graphics systems can easily be built. The general purpose library
consists of, lines, boxes, circles, triangles, text, cursor transfer to
the TV screen, hardcopy of graphic image, global setting of devices,
open a window to a new graphic, time/date, analog value, basic
status, basic control, bar graph of analog value. Reference [l] has a
complete description of the general purpose symbol library. A
control graphic for many systems can be built from these basic
symbols, however a few custom symbols usually make the final
product much more esthetically pleasing.

The final lesson learned was that in using a powerful and
flexible facility such as this it is not only possible to create
informative and easy to use graphics that are pleasing to the eye, one
can create cluttered, unorEanized eraohics that are virtuallv
impossible to follow. In fat?, graphics 01 the second category ark
much easier to do than the fust. The ADDIe Macintosh team included
a full time artist on the staff. Any’iarge scale system (SSC?)
planning to use a graphical interface should certainly have high
caliber artistic talent included in the design team.

The graphics interpreter’s basic function is to schedule
the execution of the symbol definition routines. The following is a
brief sequence of events (See Figure 3).

1) Initialize all variables

The interactive graphics interface could not have reached
its final form without the helo of manv ueonle. Kevin Cahill and
Jim Smedinghoff freely prdvided sy~&m~support, vital to this
project. Dave Johnson, Wally Kissel, Don Rohde, and Duane Voy
provided feedback in the implementation of the current system and
ideas for future development. John Marriner provided ideas and
feedback during the design phase of the project.

2) Get a GDF file

3) Go through the GDF file a line at a time, for each symbol
call the appropriate INl routine passing the parameters in the

[l] G. N. Mayer and S. Beck, “Basic Interactive Graphic
Interface”, Software Documentation Memo No. 78,

line to the routine. FERMILAB, December 9,1985.

4) Go into a loop, calling the PER routine for each symbol
as often as possible. If a keyboard interrupt occurs, fiid the
currently selected symbol and call the KBI routine for that
symbol.

[2] S. Beck and G. N. Mayer, “The Interactive Graphics
Editor”. Software Documentation Release No. 86.
FERMILAB, December 8.1986.

routine for that

I Until user requests exit
I

Cleanup

Figure 3 Logic for Graphics Interpreter

The primary problem encountered with the interactive
graphics system was the tendency to overload the data collection
Eapacity 01 the control system. The first graphic page consumed
80% of the total data collection canacitv of the D-bar source. The
first graphic page (stochastic cooling &ck tail^momentum) had
about 200 devices on it compared to a standard parameter page
which displays at most 20 devices. There was no real solution to
this problem other than to exercise restraint when designing
graphics.

[3] G. N. Mayer and S. Beck, “Advanced Interactive
Graphic Interface”, Software Documentation Memo No. 82,
FERMILAB, January 17, 1986.

740

PAC 1987

