
THE DATABASE FOR ACCELERATOR CONTROL IN THE CERN F’S CDUPLEX

J.H. Cuperus
CERN. 1211 Genive 23, Switzerland.

The use of a database started 7 years ago and is an
effort to separate logic from data so that programs and
routines can do a large number of operations on data
structures without knowing a priori the contents of
these structures. It is of great help in coping with
the complexities of a system controlling many linked
accelerators and storage rings.

data-driven software, the General Module [GM], which
can recursively call itself [31.

Introduction

OPERATOR INTERFACE

If

--

PROCESS CONTROL PROGRAMS (PCPI
The CERN PS accelerator complex consists of 9

linked accelerators and storage rings. Together these
machines accelerate protons, antiprotons, electrons,
positrons and ions. The PS [Proton Synchrotronl can
handle them all and redistributes them for local
experiments or for further acceleration in the SPS
[Super Proton Synchrotronl or LEP (the Large Electron
Positron storage rings now under constructionl.
Operation In each accelerator is organised in
supercycles consisting of many cycles. A cycle can be
as short as 1 s and is dedicated to one mode of
operation 1e.g. acceleration of positrons to a certain
energy and ejection to the SPS) and the next cycle can
be completely different. This means the switching Of
several thousands of parameters on a cycle to cycle
basis The operators can monitor and adjust each type
of cycle independent of all others and can consider the
accelerators as different virtual machines for each of
them [Il.

it

I

GENERAL MODULES (GM1

If

I

I
VIRTUAL MACHINES

PULSE TO PULSE MODULATION (PPMI

REAL MACHINES

Fig. 1: schematic view of the control system

The accelerators were constructed and modernised
over a period of more than 30 years and this results in
a large diversity of equipment. Although the PS complex
is not very large compared to some newer accelerators,
it is nevertheless a very complex set of machines. The
PS control system tries to make this complexity
manageable and to give a uniform view of the equipment
to the operators. For this we use several tools and one
of them is the database. I will concentrate in this
paper mainly on the real-time [RTI use of the data in
this database and the emphasis will be on general
concepts, which can be applied to many RT systems,
rather than on the specific requirements of our
application.

Fig. 1 gives a very simplified view of our control
system. Most of the general services are omitted and
emphasis is on two classes of software components:
Process Control Programs [PCPsl and GMs. These classes
consume the bulk of our programmer resources and
productivity and reliability can be very much enhanced
by making them more general land as a consequence
reusable1 while giving them their specificity by making
them operate on different data. Generalisation of the
methods described here to other software is straight-
forward because these two classes stand for two general
classes found in every control system: programs which
Initiate action and procedures which perform functions
on request of the programs In our system these
software modules are distributed on more than a hundred
computers and microcomputers and the subroutines are
called with a remote procedure call mechanism.

The PS Control Svstem The Database Manaqement Svstem

The present control system [21 was developed 10
years ago to replace gradually many smaller systems
which had grown independently. It consists of a network
of 27 NORD computers for RT operation which we can
divide in 3 categories: [al Front-End Computers LFECsl,
one per accelerator. connected to the machine
components and more than 100 microcomputers (Autonomous
Crate Controllers or ACCsl through serial CAMAC; lb1
console computers, each serving an Identical
non-dedicated general-purpose console and [cl service
computers doing specific tasks such as message
handling, sequencing, program development, and the
TREES computer which provides RT database services.

The control system project did not initially
include the concept of a central database but each
subsystem had its own data structures and data editors.
In certain cases this may lead to a user Interface
which is exactly adapted to the requirements but, in
practice, it means a lot of duplicate effort and, due
to manpower limitations, often severely limited
products. It also means that data entered for one
application cannot be used for another and it is
difficult to get an overall view of the data or
documentation of the data on paper.

The software is built in layers which, at each
level, hide some of the complexities and diversity of
the level below. On the lowest levels are the Interface
Modules [It41 which drive specific CAMAC modules [which
in turn control the equipment], the Equipment Modules
[EMI which drive the various equipment elements through
the IMs and the Composite Variable Modules ICVMI which
can call a weighted combination of EM elements. The
CVMS , EMS and IMs are instances of a general piece of

The need for more general data structures was first
felt for the alarm system [41 which must survey the
equipment and alert the operators in case of
malfunctions. At that time [19801, only a hierarchical
database [SIBASI was available on the NORD computers.
While such a system is well suited for large commercial
applications where the data structure is stable over
long periods, it was deemed to be badly adapted to our
requirements of a large number of ever changing and
growing data structures. We decided to build our OWI
file system, INFO, with many features and data types

CH73X7-‘)/8710(HX)-O703 $1.00 6 IEEE 704

© 1987 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1987

adapted specially to our needs The data structures
were relational but the system was not. The data base
served mainly to generate RT data structures and this
was done with application programs which could open
many tables at the same time, each with an index. In
that way we ilot relational capabilities but at the
price of more complex application programs which had to
do much of the work. INFO served well our needs and its
use was gradually extended to other parts of our
control system with the consequence that its limited
capabilities got overstressed.

Recently we got network access to the relational
database management system ORACLE on a central IBM 3090
computer and we are now loading all our data on this
system. This will facilitate updating and manipulation
of the data. It will make application programs simpler
and ~111 allow much more powerful database queries. It
Will not much change our RT data structures, however,
which are derived from this database In much the same
way as befare.

Qteqories of Data

We can dlstlngulsh three categories of data in a RT
system: static data, dynamic data and archive data.

Static data describe the structure of the system:
parameters of the hardware [names. minimum and maximum
values, conversion factors . ..I. configuration of the
interface ICAMAC addresses, interconnections ..I.
relations between software modules and where they are
located and so on. This structure is fairly stable and,
when it is designed or modified, this is in general
done by hardware specialists or control system
specialists and not by the machine operators. The
source of these data, directly or indirectly, is (or
should be1 the central database.

Dynamic data are the result of a setting by an
operator [magnet current, switch positlon, description
of the cycles rn the supercycle . ..I or the result of a
measurement [beam profile. equipment status . ..I. These
values are conserved, in computer memory or in hardware
registers, until they are overwritten by new data.
Backup of the current control settings is done fram
time to time on the disks of the various FECs. These
data can be used to restore the FEC and associated ACCs
to normal operation in case of corruption of the
current data.

Archive data are permanent storage of past dynamic
data. On request of the operator, the state of all
control settings of a part of the machine is stored
together with the identification of the parameter set,
the kind of virtual machine and the date. Many
different sets of archives can be stored. They are used
later, in various combinations, to set up the machine
quickly for a particular operation. Special kinds of
archives are statistic data which store a compressed
history af the beam measurement data and logs which
give the history of certain actions and occurences.

Real-Time Data Structures

We "Se three classes of data structures which are
derived from our central data base:

Dictionarv Tables:

These are closely related to views existing on the
central database. They are installed on the TREES
computer and can be read by a remote procedure call to
a routine which returns a complete record when the user
produces the key. To make this service efficient, the
records are ordered physically according to the key and
the [short1 Index to the disk pages 1s permanently in

memory. This has the advantage that any record ctin be
retrieved with, at most, one disk access and often none
if the disk page is already in memory, which often
happens when closely related records are successively
requested.

A heavy user of these tables is the alarm display
program which gets a lrst of hardware element
identifiers and alarm message numbers and then
displays, with the help of the dictionary tables, a
list of element names and alarm messages. The operator
can then point to one of the elements and ask for
detaiIs The program will query the tables for the
addresses of the relevant registers and their
significance, make calls to the hardware and display
the status of the registers, with the meaning of each
bit described if so requested.

Another use of the dictionary tables is for setting
up the hardware from a power-off state. An
initialrsation program looks up and executes the
sequence of commands necessary to set up a class of
equipment, followed by more specific commands for each
individual hardware element. When all this is finished,
the operational data from an appropriate archive are
loaded. The list of hardware elements to operate on is
given by the working set Isee below).

It would be simpler to get the dictionary
information directly from the central database but, for
the moment at least, it is not possible for us to make
a remote procedure call to ORACLE. Even if this were
possible, there is a timing problem: ORACLE is quite
efficient for responding to complicated queries for
data sets but needs a minimum time even for returning a
single record and a typical screen display may need a
large number of them which can result in too long
delays, especially in a multi-user database system
where everybody has the same priority. The central
system may also be down for maintenance at times
unrelated to the operational needs of our control
system.

A list is here a sequence of data of variable
length. A list is identified by its type and element
number. All lists are put together, one after the
other, in one long file with an index pointing to the
start of each list. A remote procedure call to the list
handler will return the requested list. A list type can
have any structure which is deemed useful. List types
currently in use or planned for the near future are:

Workins-Sets: an operator who wants to work with a
set of equipment elements will go through a tree by
means of a touch panel and will successively select the
accelerator, the system, the sub-system and the virtual
machine on which to work. At this level, the tree
returns a working-set number. The operator may then
call a general program, e.g. to initialise the
equipment or to read or modify the status of the
equipment. This program ~111 acquire the working-set
list and operate on the equipment elements in this
list,

Scanlists: In most FECs and ACCs. there is an alarm
scan program which surveys the hardware elements for
malfunctions. This program is identical everywhere and,
when it is started, it acquires Its particular scanlist
from the TREES computer. This is not only a list of
equipment to operate on but it also tells the program
how to do the checking for the element at hand. The
scanlist is in fact a piece of simple pseudo code which
is interpreted by the scan program.

Tables : Several programs or subroutines have data

705

PAC 1987

in tabular form which is hardcoded or initialised by
reading a corresponding data file. We should modify
these modules so that they read the data as a list
derived from the central database.

Indexes : Each archive (with control settings1 is
stored at present in 1ts own file and there are
difficulties to match old archive data to changed new
configurations of equipment. It is planned to store
them in the future in a single large file with an index
pointing at the different archives. This index would be
maintained with the help of the central database and
would be available as a list. The structure of each
archive would be kept in a dictionary file.

Comoiled Data

In each FEC and ACC. sits an identical GM kernel
which gets its specificity from data tables and a
subroutine library. Most of the subroutines are fairly
general and can be reused but some are linked to
equipment that is so specific that they have to be
written specially. The data tables have a complicated
structure and variable dimensions Acquiring them at
lnltlallsatlon would not be practical. Instead they are
derived from the central database by an appllcatlon
program which produces source code Iin Pascal or Cl
which is then compiled for the FEC or the ACC and
linked to the GM kernel code and the subroutine
library

The tedious Job of rewriting a variant of an
existing module is now reduced to filling in the data
1Fl the central database and wrltlng a few well defined
subroutines. Filling in the database tables is at
present a bit abstract but this will Improve when a
shell has been built around these tables for guiding
the module writer. A mechanism for inheritance will
also be included so that the module writer can start
from a previous module definition and fills in only the
deviations from this definition as is done in object
oriented languages.

After the database is updated, the writer can call
a suite of programs will generate a complete GM code
image ready for installation on a FEC or an ACC. A new
version of the FEC dispatcher is also generated. This
dispatcher distributes incoming remote calls for the GM
to the relevant ACCs. Complete documentation is
generated automatically on request.

Generation of the Real-Time Database Extension

New GM images are generated and loaded whenever
necessary for an individual FEC segment or an ACC. New
versions of the dictionary and list files are generated
as a whole to guarantee consistency of the data. They
are copled in a duplicate set of flies on the TREES
computer Control is then transfered from the active to
the duplicate files which now become the active files
and vice versa If something 1s wrong, we can do the
Inverse operation and come back to the old files. The
alarm scan programs can sense that a new database
version is installed and they will then automatically
acquire a new version of their scanllst.

The delay for generating and installing new
versions is about 30 minutes. This is usually no
problem because most of the static data do not change
much and about 2 updates per week are sufficient. For
some special operations, however, or in case mistakes
are detected, some faster action may be desired. In
that case we will allow quick changes with a special
editor which can override the normal read-only
protection. This editor will leave an entry in a log
file so that the central database can be updated
accordingly later on.

Conclusions

Entering data in a database is a lot of effort You
get the most from your effort when this is done at the
earliest possible moment. The data can then be used for
planning, installation, running of the accelerator,
general information, automatic documentatlan, help in
troubleshooting and, in the near future, as an
information source for expert systems. Some of our data
wele introduced into the database at a late stage and
we did not profit fully from our efforts but even then
it was worthwile. Any new design is now first looked at
from a database viewpoint.

To conclude, some thoughts about possible future
extensions. The ‘compiled data’ idea looks like a step
in the right direction and we should try to generalise
it and to apply it to other modules which may look more
and more as objects communicating to each other with
messages even if the real communication is St.111 done
by means of procedure calls. On the design side we
should develop tools for manufacturing these ob3ects hy

combining the best ideas from obJect oriented design
with the use of a central database. This database can
hold information about all modules in the system and
how they interact with each other. It can be used to
create virtual ablects which can be checked for
consistency with all other relevant objects. The data
for the thousands of instantiations of these objects
can be entered most conveniently in a tabular way
directly into the database. When the designer is
satisfied with his work, the virtual modules can then
be compiled and installed in the XT system Tools

should be developed to make this installation easy and
safe and with minimum disturbance to the existing
system.

All this would greatly facilitate the building of
sophisticated control systems but at the cost of
complicated development and installation tools This is
not new however, programming in a higher level language
is much easier than in machine language but at the cost
of a complicated too1 : the compiler. Nobody 1s
frightened by this because you can buy reliable
compilers cheaply while we have to build the tools for
our control system ourselves which is difficult within
the resources of a busy control team. Once built,
however, such tools could be easily adapted to
different computers and used for many different control
systems.

Acknowledsements

I thank L. Casalegno. A. llaneels, P. Heymans. C H.
Sicard and P. Skarek for many good ideas on how to
apply database access methods to our control system

References

[II P.P.Heymans, B.Kuiper. Concurrent Control of inter-
acting Accelerators with Particle Beams of varying
format and kind Presented at EPS Europhyslcs
Conference on Computers in Accelerator Design and
Operation, Berlin 1983.

I21 G.P.Benincasa, J.Cupirus,A.Daneels,P.P.Heymans.J P.
Potter, Ch.Serre,P.Skarek, Design Goals and Applic-
ation Software Structure for the CERN 29 GeV Accel-
erator Complex, presented at 2-nd IFAC/IFIP Sympos-
ium on Software for Computer Control, Prague, 1979.

131 L.Casalegno, J.Cupirus, A Daneels. Ch.Serre, Cl H.
Sicard, P.Skarek. Distributed Application Software
Architecture applied to the LEP Preinjector
Controls I presented at the 7th IFAC Workshop on
Distributed Computer Control Systems, Julich. 1986.

I41 J. Cuperus. An Interactive Alarm System for the
CERN PS Accelarator Complex, proc 1983 Part. Accel.
Cone,, Santa Fe.

PAC 1987

