
GENERIC DEVICE CONTROLLER FOR ACCELERATOR CONTROL SYSTEMS* 

R. Mariotti, W. Buxton, R. Frankel, L. Hoff 
AGS Department, Brookhaven National Laboratory 

Associated Universities, Inc., Upton, New York 11973 USA 

Introduction 

Distributed intelligence for accelerator control 
systems has become possible as a result of advances 
in microprocessor technology. A system based on 
distributed intelligence is inherently versatile, 
readily expandable, and reduces both information flow 
across the system and software complexity in each 
unit. 

Overview of the AGS Distributed Control System 

A new distributed-intelligence control system 
has recently become operational at the AGS for trans- 
port, injection, and acceleration of heavy ions. A 
schematic representation of the basic architecture is 
shown in Figure 1. A brief description of the func- 
tionality of these physical devices follows.1*2 

1 ACCEL;,RAT,T ,;EVICES 1 

Fig. 1. Schematic representation of distributed 
control system. 

Our system consists of three hierarchical 
layers: Host, Station, Device Controller.3 

Hosts act as sources of commands and setpoints, 
and sinks of readbacks and status reports. Prominent 
features of the Hosts include their console function 
and their ability to provide a computational re- 
source. Apollo 32-bit workstations are now employed 
as hosts/console computers. 

A Station polls Device Controllers for informa- 
tion and formats this information into reports when 
requested by the Host; generates unsolicited alarm 
reports by use of "watchdog" tables downloaded from 
the Host; forwards commands and/or setpoints gen- 
erated by the Host to the Device Controllers. The 
Station is cycled synchronously and has parametric 
limits on the period within a machine cycle when 

*Work performed under the auspices of the U.S. 
Department of Energy. 

commands may be sent to, and information acquired 
from Device Controllers. The Station also appends or 
strips network level destination protocol headers. 

Device Controllers have the function of ac- 
quiring information and/or controlling accelerator 
devices or equipment. 

Every physical Device Controller has available 
to it information which must be arranged into data 
structures representing "logical devices". This 
fundamental data structure, resident in the Device 
Controller consists of command/status fields, set- 
point fields, and readback fields. 

According to the type of information, the data 
base contains "passive" information and "live" 
information. The passive or static information does 
not change in real time and consists of a series of 
tables (relations) which allow user modules and 
system uti'lities to access information on the net- 
work. Examples are names of logical devices, network 
addresses, allowed status, etc. 

Data which changes in real time under operator 
control forms the "live" or dynamic data base and is 
resident in memory distributed in the network, i.e., 
in the Station and Device Controllers. 

The Universal Device Controller Concept 

The design of modern accelerator control systems 
is generally network based and has hierarchical 
layers. The top layer consists of the computers 
which support the operator consoles and provide 
high level programming facilities for general control 
operations. The middle layer consists of the micro- 
computer systems. Most device connections are made 
directly to this layer. the lowest layer consists of 
equipment which contain interface hardware, but may 
not have intelligence. 

General tendencies in electronics lead to the 
distributed intelligence concept. We implemented 
that concept at the lowest level of the control 
system, with intelligent interfacing. An attempt has 
been made to integrate the devices for accelerator- 
specific interfacing into a standard microprocessor 
system, namely, the Universal Device Controller 
(UDC). The synchronization, timing mechanisms, and 
computer capabilities of the control system have been 
concentrated into the interface level (Figure 2). 

The UDC Assemblies 

The main goals for such a generic device con- 
troller are to provide: (1) local computing power; 
(2) flexibility to configure; (3) real time event 
handling. 

(1) Signal adaptation, data conversion, and data 
translation are made possible by the UDC processing 
power. The controller must execute the lowest level 

('H??87-9/X7!0000-OhOO $1.00 0 IEEE 600 

© 1987 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.

PAC 1987



EXISTING OPTIONS 

can activate or deactivate high speed DMA channels 
when we need to acquire data or generate functions; 
delay features can also be implemented. The connec- 
tion between a channel and a specific event interrupt 
is determined by hardwired jumpers. 

Figure 3 shows the prototype controller as- 
sembly. The dual processor structure consists of a 
Communication Processor and the Device CPU. The dual 
ported RAM allows them to communicate and exchange 
data. The communication processor ensures link-up 
with the station using a communication protocol. The 
Device CPU provides data acquisition, data process- 
ing. and equipment control. 

STATION UDC 

\ 

I 

DEVIC?--- 

Fig. 2. The UDC Enhancement. 

software. Application software and User Service 
Routines must be relieved of equipment-specific 
details which should be dealt with by the intelligent 
interface. The UDC must be able to control the at- 
tached equipment autonomously as long as the opera- 
tion mode does not change. Test and diagnostic 
routines and a terminal interface should be provided 
at the UDC level in order to run them locally at that 
level. 

(2) The main feature of this controller is its 
universality as programmable peripheral interface 
capability. The appropriate code downloaded from the 
central control computer will configure the con- 
troller according to the equipment it is to control. 
A menu-driven procedure will use static data base 
information contained in "device descriptor files" in 
order to initialize the controller and set up the 
actual operating conditions. As an example, the same 
standard hardware can be configured as a power supply 
controller or a vacuum controller and the operation 
parameters can be set up. The needed transfer func- 
tion, written in a high level language will be coded 
in short and easily generated (command) files. The 
imbedded information fields form an ordered list 
consisting of commands, statuses, setpoint/readbacks, 
and actual operating conditions. A UDC resident 
interpreter will translate that information from the 
device definition files in commands to the device 
controlled. The term "universal" applies to the 
functional capability of the package which will be 
built as a compatible family of modules. It is also 
necessary to have a mechanism to be able to download 
programs in lieu of parameters. 

(3) Real time synchronization is accomplished 
at this level. Many industrial process control 
systems provide programmed transfer functions which 
relate input to output states. The accelerator 
control and data acquistion system requires also the 
ability to generate and receive functional patterns 
based on time or events. The controller must perform 
the process synchronization autonomously, so that the 
demand for real time ability in the higher level 
computer is reduced. As an example, external events 

LINK TO THE STATION 
TRANSMIT/RECEIVE 

(BIT BUSi 
DEVICE CPU 

s 

2 

5 
MICROPROCESSOR 

iPlJiPMENl CONTROLL; 
DEVICES, INSTRUMENTATION 

PROCESS 

Fig. 3. The UDC Prototype Assembly. 

It can be assumed that the UDC does not require 
a master-to-master interconnection and that a master- 
slave relation between a parent station and its UDC 
nodes is satisfactory. 

A Software View; The UDC Software Tool Kit 

Software tools should be provided for a device 
controller designer in order to make the job of 
writing and debugging the UDC software more effici- 
ent. The highest level tools would include a con- 
figured OS with all the required tasks and drivers as 
well as a method to load the code via the controls 
network. The low level tools provided would be 
macros and routines to interface with the standard 
report and the controls I/O hardware. A view of the 
UDC software follows. 

There are three standard tasks in the UDC: the 
scan task, the receive-commands task and the send- 
standard-report task (Fig. 4). The receive-commands 
task and the standard-report task are the same in 
every UDC. For most UDCs there are also driver tasks 
which are used for theI/O to the devices being con- 
trolled. This driver might interface to a network 

601 
PAC 1987



M‘Q), a bus (IEEE 488), a port (RS 232, DMA), or 
memory. The drivers and their tasks are some of the 
tools provided for the device designer. The UDC user 
will be able to interface to the driver without know- 
ing details of the I/O operation. 

SCAN TASK 

SCAN A DEVICE 
AS A COMMAND 

OMMAND 
._--_ 

Fig. 4. Standard Tasks in the UDC Software. 

The scan task has a form that is common to all 
device controllers. The details of the routines that 
are called from the scan task must be defined by the 
device designer. The scan task has an initialization 
section which sets up the I/O hardware (ADCs, DACs, 
I/O ports, timers DMAs) for the particular applica- 
tion. After the initialization section, the scan 
task goes into a loop forever. The function of the 
main loop is to scan each device and fill in the 
standard report. This main loop also takes care of 
the buffer switching among two or three standard 
report buffers. After each device is serviced there 
is a routine which looks to see if a command has been 
sent to the device controller. If there is a command 
in the queue, the command is processed. 

The receive command task, which is the same for 
all controllers. just receives commands from the 
station and puts them in a queue. There is a routine 
in the scan task which can look into the command 
queue to see if there are commands in the queue. 

The send-report task sends a report to the 
station when the device controller is made a talker. 
It sends the last buffer filled in by the scan task. 

The standard-report data structure, init-hard- 
ware, and scan-a-device are unique for each UDC type, 
but have a common form. They are built by the device 
designer using the low level IJDC software tools. 

The low level UDC software tools would make it 
easy for the device designer to do the following: 
(1) set up the I/O hardware, (2) define the standard 
report data structure, (3) define the actions to take 
in filling in the standard report for each device in 
the scan, and (4) define the actions to take when 
processing a command for a device. 

The translation between the I/O hardware read- 
ings and the format of the standard report and the 
translation from commands to the I/O hardware is the 
heart of the device controller. All of the UDC soft- 
ware tools come into play in assisting the device 
designer in writing the code to do the translation 
functions. Data structures, names, and I/O routines 
are available to make the translation code easy to 
write and read. 

We picture the UDC running a multitasking OS 
much like RMX 88 which is now in use in the station 
and device controllers. 

Status 

For the prototype design of the UDC, a simple 
8085 microprocessor has been used. The peripheral 
circuits include I/O ports, DMA channels, timers/ 
counters, 32K of program memory, 16K of data memory, 
an interrupt controller, and a terminal controller 
with a RS232 interface. The PROM resident monitor 
and a XYBASIC interpreter create a friendly environ- 
ment to write tests, and to exercise the controller 
and the interface from the terminal. The same RS232 
interface is also used as a port to download/upload 
programs. 

For the link and communication CPU, the Intel's 
BITBUS protocol and components have been used. The 
BITBUS uses SDLC standard and interconnect segments 
up to 300 meters in length at 375 Kbits/sec and 1200 
meters in length at 62.5 Kbits/sec. From the user 
point of view, the twisted pair link to the UDC 
behaves and is completely compatible with the Intel's 
IRCB 44/10 Remote Controller Board. Using Intel's 
8044 Controller and the IRMX 51 Executive in pre- 
configured firmware, the actual design of that part 
of the UDC is emulating Intel's product. 

A key component in the UDC system is the Dual 
Ported RAM that ensures the data communication 
between the Device CPU and the Communication Pro- 
cessor. 

The UDC prototype was intended to be only a 
testing and debugging system. The assemblies for the 
AGS will most probably use the Motorola 68000 micro- 
processor family or Intel 80186 in a VME system. 
Aside from the BITBUS for the communication protocol, 
there are two or three candidates: the MAP system, 
token-ring approach based on the TM380 chip set, or 
the MIL 1553 data link. 

The original idea in the design of the UDC soft- 
ware was to progress toward the resident interpreter 
in the UDC that would be programmed in some new 
language. Once the UDC Software Toolkit is well 
developed, such an interpreter can be built. The 
main problem is to define a distributed data base 
that is universal to all accelerator subsystems and 
easy to understand. 

References 

1. R. Frankel, Tailoring a CSMA Local Network to 
Research Needs, Data Communications 2, 145-154 
(1984). 

2. .I. Skelly, T. Clifford, R. Frankel, A Broadband 
Accelerator Control Network, IEEE Trans. Nucl 
sci., NS-30, 2155 (1983). 

3. A. Stevens, T. Clifford, R. Frankel, Distribu- 
tion of Computer Functionality for Accelerator 
Control at the Brookhaven AGS, presented at the 
1985 High Energy Physics Conf. on Particle 
Accelerators, Vancouver, B.C., May 13-16, 1985 
(in press). 

602 

PAC 1987


