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Abstract 

A particle tracking method for a ring system 
in which a sextupole magnetic field is distributed 
along the beam axsis has been developed. This 
method uses Jacobi’s elliptic functions inside the 
bending magnet and the canonical integration method 
in the fringes. The calculation time for the new 
method is the same or faster than that of the 
canonical integration method, and it is ten times 
faster than the Runge-Kutta-Gill and thin lens 
approximation. A special characteristic of our 
method is that the calculation time is always 
constant, even if the magnet length in increased. 

Introduction 

Recently, synchrotron radiation has been 
considerd as a promising candidate for a soft X-ray 
source in micro lithography and several compact 
“,;?,;~~~,,-~ electron storage rings have been 

. These employ bending magnets with a 
strong magnetic field and SfMll curvature. 
Generally, such magnets have non-linear components 
in their magnetic field which cause reduction of 
the dynamic aperture for the circulating beam. 

There are several particle tracking methods 4-7 

for evaluation of the dynamic aperture. The thin 
lens approximation is the most popular. However, 
when the non-linear components is distributed along 
the beam axsis, such as in the bending magnet 
mentioned above, the problem must be treated as an 
assembly of many small 
computation time. Ruth 

gections which needs a long 
has proposed a canonical 

integration method. This method is effective in 
shortening the computation time without 
deterioration in accuracy. 

In actual magnets, a sextupole field is rather 
constant inside the magnets and change very much on 
the fringes. A particle equation of motion under 
a constant sextupole field can be solved 
analytically. Taking these conditions into acount, 
we propose a new method in which the analytical 
solution is applied inside the magnet and Ruth’s 
method, on the fringes. 

Tracking Method 

Inside a bending magnet 

This derivation is restricted to the 
horizontal betatron oscillation of a test particle 
under a sextupole field in a bending magnet and 
higher non-linear fields than the sextupole field, 
the radiation effect and electro magnetic 
interaction with the environment are neglected. 
Then, a particle equation of motion is given by 
the following equations, 
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where p 1s a curvature of the particle trajectory 
in the magnet; B, strength of the magnetic field; 

and Sex, the strength of the sextupole field. The 
solution of eq.(l) can be represented by Jacobi’s 
elliptic functions sn and cn and is given by 
eq.(2). 

x as”*(ws,k)i bcnZ(ws,k) (2) 

where a, b are betatron oscillation amplitudes;w 
is angular frequency; and k, the modulus. 
Differentiating eq.(2) twice, the next equation is 
obtained. 
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The condition that eqs. (1) and (3) must be 
identical gives the following equations. 
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One more equation to obtain four unknowns is 
given by the initial conditions for the position x0 
and momentum PO of the test particle at s=so. This 
gives eqs.(7) and (8). 

) 

x0 a sn2(ws0,k)tb en* (ws‘, , k) (7) 
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From eqs.(7) and (81, eq.(9) is obtained. 
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From eqs.(4) equations are,deA5uiid. (6) and (9)) the following 
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Solving eqs. (10) to (13), a, b, w and k are 
obtained. The position and momentum of a particle 
at s=s+so are given by eqs.(lll) and (15). 

x-as? (~(s-ls~) ,k)+bcn*(w(s t sO) ,I,) 
(14) 
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Equations (14) and (15) are the basic equations for 
particle tracking. It is not practical from the 
viewpoint of computatational time to get so from 
the solution of eq.(7). Instead, eqs.(l6) and (17) 
are used: they are deduced from eqs.(l4) and (15). 
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where modules k is omitted for simplicity. 
Cn(ws,,k) and sn(ws#k) can be obtained from eq.(7). 
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Fringe 

The third order canonical 
method4 

integration 
which is obtained by a Tayler expansion of 

a Hamiltonian is applied in the fringe. 
order map is given by the following scheme: 
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Map : (x. p) =b (h) !+, SP,) 

given by three step process 
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where cir di(i=1,2,3) must satisfy the next 
conditions. 
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Results and Discussion 

As an example, we,applied our method to a 
racetrack storage ring with 1.4m-long bending 
magnets. Canonical integration method, thin lens 
approximation and the Runge-Kutta-Gill method were 
used for comparison with the new method. In the 
calculation, the bending magnet was assumed to be 
composed of small sections with length h. 
(Hereafter, each section is called a step.) In the 
canonical integration method, eq.(21) was used. In 
the thin lens approximation, the following 
three-step procedure was used. 
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In the Runge-Kutta-Gill method, the usual fourth 
order method was employed. 

Fig.1 shows the mapping results on a phase 
space. The map shape by the new method does not 
depend on the number of steps, The plotted 
tracking resuls from the Runge-Kutta-Gill method do 
not show a closed curve on the phase space, because 
the symplectic condition is not satisfied in this 
method. Then, further comments must be made on the 
canonical integration method and the thin lens 
approximation. As both methods satisfy the 
symplectic condition, Liouville's theorem holds and 
particles continue to circulate without damping of 
the betatron oscillation, whatever the step size 
is. However, in the case of a large step size, the 
map shape and the area enclosed by tracks on the 
phase space differ from those of the small step 
size. For example, in the canonical integration 
method, the maximum value of the position x . 
54mm and the minimum value x . is -50mm wh%'tiI 
rin$;;vmoafn~t.;ps .is large. %'iirary to this, xmax 

mini is 
is small. 

-45mm when the number of steps 
Namely, the aperture is reduced about 

20% when the step size is large. This shows that 
the correct dynamic aperture cannot be obtained if 
the step size is large, even if the symplectic 
condition is fulfilled. 
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Fig.1 Mapping results on a phase space. 
(NS : number of steps) 

Next, we investigated the relationship between 
the number of steps and accuracy of the final 
position for a particle. Fig.2 results the number 
of steps in a bending magnet and the position of a 
particle after circulating ten thousand turn in a 
storage ring. Our method gives a constant value 
which is independent of the number of steps. Final 
positions by other tracking methods depend on the 
number of steps used in the calculation. The final 
position by the canonical integration method 
oscillates when the number of steps is less than 
50. Results of the thin lens approxiamtion and the 
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Fig.2 
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Relation between the number of steps and 

the position after ten thousand turns 
( (a):This work; (b):Canonical integration 
method; (c):Thin lens approximation; 
(d):Runge-Kutta-Gill method) 

Runge-Kutta-Gill method oscillate if the number of 
steps is less than 150 and 100, respectively. This 
is then the reason as to why these other methods do 
not give the correct mapping results on the phase 
space if the number of steps is small, as shown in 
Fig.1. 

Fig.2 shows that a large number of steps must 
be taken in the bending magnet to obtain Correct 
results. The calculation time increases as the 
number of steps increases. Therefore, we studied 
the relation between the accuracy 6x, definedT;ye 
6x= 1(x-x,)/* and the calculation time. 
results are shown in Fig.3, where h is the value 
which converges within 0.1% by decreasing the step 
size in each method. The computer used for the 
calculation was the HITAC M200H. The accuracy of 
our method is always within 1%. Relative 
calculation time to obtain 1% accuracy is shown in 
Table 1 for two cases. For the case of 1.4m-long 
magnet, our method has almost the same Cak!UhtiOn 

-------__-_- 
Canonical integration method 

I I -y= x100 (%) 

Fig.3 Relation between the accuracy&x=l(x-x&/xm] 

and the calculation time. 
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Table 1 Relative calculation time to obtain 1% accuracy 
(1, :bending magnet length) 

This work 1 1 

Canonical Integration Method 1 3 

Thin Lens Approximation 1 4 - 

Runge-Kutta-Gill 9 - 

time as the canonical integration method and ,is 
about ten times faster than the Runge-Kuro;-G;,', 
method and the thin lens approximation. 
case of 14m-long magnet, calculation time of our 
method is the same as for the case of 1.4m-long 
magnet and three times faster than the canonical 
integration method. 

A special characteristic of our method is that 
the calculation time is always constant, without 
regard to the magnet length, though the calculation 
time of other methods increases with the magnet 
length. 

Conclusions 

A tracking method has been developed under a 
strong sextupole field in a bending magnet. This 
method uses Jacobi's elliptic functions inside the 
bending magnet and the canonical integration method 
in the fringes. The method was applied to a small 
electron storage ring and accuracy within 1% was 
obtained after ten thousand turn. Comparison with 
the canonical integration method, the thin lens 
approximation and the Runge-Kutta-Gill method 
showed that the calculation time by our method was 
the same or faster than that of the canonical 
integration method and ten times faster than the 
Runge-Kutta-Gill and thin lens approximation. A 
special characteristic of our method is that the 
calculation time is always constant, even if the 
magnet length is increased. 
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