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Abstract 

Th e production of integrated circuits having sub-micron 
component dimensions has motivated the development of compact 
electron storage rings to provide synchrotron x-ray radiation [I-S]. 
This paper presents considerations for optimizing the optics for 
small radius rings using superconducting dipole magnets. The key 
parameters are the sizes and angular divergences of the source 
points illuminating the different ports Two ring designs are com- 
pared in terms of theoretical beam parameters achievable using 
idealized optics. 

Backpround 

The horizontal beam size cZ and angular divergence cr,, in 
a storage ring are given by 

oz (s ) = [ A(s 1 <I + ( ll(s 1 u, I2 1 Ii2 (1) 
and 
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There are contributions from the emittance E, and the rms energy 
spread cr. The horizontal beta function ,/3=, the dispersion func- 
tion 7, and a, 3 -@i/2 are in general dependent on the longitu- 
dinal coordinate, s. This dependence leads to differing source 
characteristics at the various light extraction ports around the 
ring. 

Init,ial studies conducted by lithographers [G: indicate that 
the desired limits on horizontal spot size and divergence are 
roughly 

bZ <lmm and gZ, <lmr. (3) 

The desired critical wavelength of the source is taken to be 
X, = 10A. 

Cvlindricallv Symmetric Desiprn 

The cylindrically symmetric ring design [1,8] is characterized 
by critical wavelength X, , dipole field strength B, and horizontal 
field gradient index n as defined by 

nz-PaB 
B a2 ’ 

where p is the radius of curvature. The horizontal rms beam size 
and angular divergence for t,his design are given by 

1 
l/2 

pz = 19.8 X,3!” B-5/4 ---!-.- 
n (l-n ) + (l-n );3% ) (5) 

and 
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u , = 1.38 1 -l/4 B’/4 mie z c n 

For X, in units of angstroms and B in units of Tesla, uZ and 6,1 
are in units of millimeters and milliradians, respectively. 

An interesting feature of Eqs (5) and (6) is that dimensional 
parameters X, and R have been separated from the dimensionless 
geometrical factors involving n In general, the geometrical Eac- 
tors would be more complex expressions involving focal lengths of 
quadrupoles and drift lengths, but the overall factor would be 
dimensionless (see Appendix .4). This clearly indicates the effects 
of varying X, and B ‘4s X, is decreased, both spot size and 
beam divergence increase. Though a cylindrical machine may pro- 
duce acceptable spot characterstics at X, =20.4, the original 
Klein-ERN.4 design value [I], both spot size and divergence are ah 
best marginai, in the absence of coupling, when scaled to 
A, =lOA. 

As the field strength B is reduced, the beam divergence 
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improves slightly but the spot size increases significantly. Machine 
designs utilizing conventional dipoles can counteract this K5j4 
dependency of the beam size only by resorting to more compli- 
cated geometries. 

Symmetric Racetrack Design 

The lattice considered here has two 180” dipoles wit,11 UIII- 
form and equal field index which are connected by straight sec- 
tions, containing quadrupoles and drifts, which are symmetric 
about their midpoints. Besides allowing several mathematical 
simplifications due to symmetry, this lattice is expected to produce 
a local minimum of emittance in parameter space. 

For the purpose of optimization, three different functions-of- 
merit are considered. In order to take advantage of t,he scaling 
properties indicated in Appendix A, the functions chosen maintain 
the homogeneity of the scaling parameters. Explicitly, the func- 
tions used are 

~52 <g,b , <@> <a,b5, and eI (wj (7) 

where 5, and a,, are dimensionless quantities. The source size 
and divergence are calculated by multiplying these quantities by 

I = y,,/G,p and 0 = rJC, :p 

respectively. Here < > means average over port locations at 0’) 
*20”, and &40” in the dipole. The third form indicates a single 
point sample at the center of the dipole. From Eqs. (1) and (2), 
these functions depend on the betatron and dispersion functions, 
their derivatives and the longitudinal and horizontal emittances. 
The beta function in the dipole of a lattice with the assumed sym- 
metry depends only on ,& the value in the center of the dipole, 
and n Similarly, the dispersion function depends only on o0 and 
n With parameterizations of ,/3 and 7 in the dipoles, the emit- 
tances can be calculated. The above functions-of-merit, referred 
to generically by F,,, , can therefore be written as 

Fm = F,, (30 1 rlo , ~1. (8) 

As shown in the first half of Appendix B, the phase advance 
through the straight section is determined by the values of the 
betatron and dispersion functions and their derivatives at the exit 
of the dipole. Since the horizontal phase advance through the 
dipole depends only on $ and R , the horizonbal tune can be writ- 
ten as 

vz = vz ($0 1 70 I n 1 (9) 

Since the tune of a storage ring is a critical operating param- 
eter, it is desirable to have it be an independent rather than 
dependent variable during the optimization process. Eq. (9) cab 
be rewritten to give 

110 = do (vz I PO n 1. (10) 

This can be substituted in Eq. (8) to yield 

F, = Fm (u, 9 PO n 1. (11) 

Using the first form in Eq. (7), the behavior of Eq. (11) for 
v, -1.4 is shown in Figure 1 where contours are spaced bv 0.1. 
Table 1 indicates the dependence of the optimization on V; and 
details the resulting normalized beam spot characteristics. 

Considering now the dipole strength, Eqs. (A.10) and (A.11) 
show that increasing B improves the value of the funct,ion-of- 
merit indefinitely but at the expense of g,, The value of B =::-3.5 
Tesla satisfies the lithographer’s requirements as stated in Eqs. (3). 
The radius of curvature for X, =lOA is then 0.69 meters and the 
resultant source characteristics for V, =1.1, in the absence of cou- 
pling, are tabulated in Table 2. 
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Figure 1. Dependence of F, on ,!30 and n 

Table 1. Dependence of F, on V, 

n L! 
P 

0.74 1.32 
0.75 1.27 
0.77 1.20 
0.79 1.11 
0.81 1.02 
0.82 0.93 
0.83 0.84 
0.84 0.75 
0.85 0.67 
0 86 0.59 
0.86 0.51 
0.86 0.45 
0 86 0.38 
0.86 0.32 
0.87 0.26 

Table 

1.02 
0.89 
0.77 
0.66 
0.57 
0.50 
0.44 
0.39 
0.36 
0.33 
0.31 
0.29 
0.28 
0.27 
0.27 1 

2. Source size for vz =1.4 

1 
P 

0” 

-E?- 
1.36 
1.23 
1.11 
1.00 
0.91 
0.82 
0.75 
0.68 
0.63 
0 58 
0.54 
0.50 
0.47 
0.45 
0.43 

a,, 
0.79 
0.77 
0.76 
0.75 
0.76 
0.77 
0.78 
0.80 
0.83 
0.88 
0.93 
1.00 
1.09 
1.22 
1.41 I 

(T, 
1.51 
1.40 
1.29 
1.20 
1.12 
1.05 
0.99 
0.95 
0.92 
0.91 
0.90 
0.92 
0.95 
I .Ol 
1.12 

b,, 
0.88 
0.87 
0.87 
0.88 
0.89 
0.90 
0.92 
0.94 
0.97 
1.00 
1.05 
1.10 
1.18 
1.30 
1.47 

40” 

F m 

1.20 
1.08 
0.98 
0.90 
0.83 
0.78 
0.74 
0.72 
0.70 
0.70 
0.72 
0.76 
0.83 
0.94 
1.15 

To complete the design, the straight sections must be 
developed and the vertical tune considered. From Appendix B; if 
a triplet is used to match the horizontal machine functions, two of 
the four parameters defining the straight, section, I,,l,,f 1,f 3, 
remain free parameters. Imposing a constraint on the vertical 
tune leaves only one. Taking I, to be the free parameter dcter- 
mined by the cryostat of the dipole and injection considerations, a 
value of 0.5m is assumed. For B=3.5T and yZ =1.4, fixmg 
vy =1.4 yields [,=1.22m. / ,=.88m and J ?=1.79m. The resul- 
tant orbital circumference is 11.2m. 

Conclusions 

The cylindrical design is marginal in its performance with 
respect to the requirements of x-ray lithographers as stated above. 
Although coupling can improve the low current source characteris- 
tics, current-dependent effects such as anomalous bunch lengthrn- 
ing will certainly degrade performance. The symmetric racetrack, 
besides allowing independent tune control and relative simplicity 
in implementation of rf and injection, satisfies the lithography 
requirements without coupling. 

&Dendix A: Scaling 

Here the source size and angular divergence are shown to 
scale in a simple way with radius of curvature p and beam energy 
7. Using the notation of [lo], the differential equations for the 
betatron and dispersion functions are 

$~+~‘2+K~2=1 (A.11 

and 

#‘=Kq+ G 64.2) 
where G specifies the dipole field strength and has units of me1 
and K describes the quadrupole strength and has units of m-*. If 
p is scaled, then G scales like p-’ and K scales like p-’ Since 
differentiation with respect to s scales like p-l, inspection of Eqs 
(A.3) and (A 4) indicates that p and q scale like p. 

Considering next the damping partition numbers given by 

J, =1-D and 1,=2+0 , (A.3) 

where 

D _ j-G (G2+2K Ids , 
(A 4) 

I G2ds 

it is clear they are independent of scaling p. Consequently the rela- 
tive energy spread or longitudinal emittance 

UC = 
Cq -f <G3> ‘I2 

J, <G2> 1 (A.5) 

where C, is a constant [lo], scales like p-‘j2. Similarly, the hor- 
izontal emittance given by 

t, = 
C, -y2 <G3H> 

J, <G2> 

where 

H =L ‘12+($‘1) Ah)2 
P [ 2 1 

(A.6) 

(A.7) 

can been seen to be independent of scaling p. 

Combining the above results and referring to Eqs. (1) and (2) 
in the main text leads to the deduction that (I, scales like pli2 and 
d I scales like p-l/*. Considering again Eqs. (A.3) and (A.4) one 
fiids that both 6, and 0~1 scale like -y as the energy is varied. 
These results can be summerized by 

u, = &- 7 F(lattice ) w3) 
and 

u2t = JC’, /p 7 G(lattice ) (A4 

where the dimensionless functions F and G reflect the geometric 
properties of the lattice independent of the electron energy and 
the scale of the bending radius. 

The utility of Eqs. (A.8) and (A.9) is realized when lattice 
design optimization is considered. For a useful class of functions- 
of-merit,, the above factorization effectively reduces the dimen- 
sionality of the parameter space by two because the lattice 
geometry, represented by F and G, can be optimized independent 
of p and 7. Useful alternat,ives to Eqs. (A.8) and (A.9) can be real- 
ized by expressing p and 7 in terms of X, and the main dipole 
field strength 23. This results in the proportionalities 

uz cc A;314 B-514 (A.10) 

and 

u,r oc X;‘/4 B’i4 (A.ll) 

In this form, the constraint on X, is trivially imposed and the 
effect of varying the dipole field strength is shown. 

ADDendix B: Matching 

Matching, the design of an optical transport system using 
quadrupole focusing elements and drift spaces, is a common prac- 
tice in lattice design. In this appendix, two examples particularly 
relevant to the design of symmetric racetrack machines are 

465 

PAC 1987



presented If R is used to represent the linear transport matrix 
that takes .r and Z’ from location 1 to location 2 , then the beta- 
tron and dispersion functions evolve according to 

,Q:R,; /3~2R,,R,za,+R,?z y, WI 

BZ = R 1181 -c R 12 91’ P 2) 

Taking locations 1 and 2 to be at the beginning and end respec- 
tively, of the straight section in a symmetric racetrack lattice 
implies that B, = i3, and t/e = rlr. Using this and dropping the 
subscript 1, Eqs. (B 1) and (B.2) become 

R 11 = 1 - Jf R 12 , 
B 

(B 3) 

(R ;; 1) /3 2R ILR lzct + R ; 1+f.? -=o. 
,a 

(B.4) 

The bctatron phase advance through the symmetric straight, 
section can be shown 1111 to be given by 

sin(Q) = 9 (B.5) 

Combining Eqs. (B.3) and (13.4) to eliminate R tr and substi- 
tuting into Eq. (B.5) yields, upon trigonometric simplification 

tan(+) = :p + cy (B.6) 

This result implies that it is impossible to construct’ a 
straight section. regardless of complexity, t,hat allows adjustment 
of the horizontal tune without affecting the horizontal betatron 
and dispersion functions in the dipoles. 

As a second, more practical example of matching, consider 
matching a triplet into the straight section of a svmmetric 
racetrack. To achieve a “match”, the betatron and dispersion 
functions are developed from one end of the straight, section and 
the constraint that their derivatives vanish in the center of the 
straight is imposed This results in functional relationships 
between drift lengths, quadrupole focal lengths, and the machine 
functions desired at the ends of the straight section. 

The specific case considered is indicated by the following 
thin-lens matrix representation R for the first half of the straight 
section. 

R-(1;, Y)(i :2](-lffi ;)(i ?] CB7) 
The derivatives of the machine functions evolve according to 

az = ~ R ,,R zd4 + (1 + 212 ,zR dam 0-1 

1+cu,2 
--R ,zR 22 - 

PI 
and 

q2’ = R ~1~1 + R MI’ (BJ) 

Imposing the condition ‘la’ =I 0 and cy2= 0 reduces equations B.8 
and B.9 to 

and 

Jzz fl 

(l- I1 ) 
- 12 (B.10) 

vill’ + 1, 

f 1= 
(B-f,alt -1, 

(P- (I,-I&p - (I,-I,) I2 
(B 11) 

PI 

PI 
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where the abbreviation t =tan(&$j2) has been used. The subscript 
1 on the machine functions entering the straight section has been 
dropped 

Eqs. (B.lO) and (B.ll) describe the correlation between focal 
lengths and drift space lengths required to achieve a match into 
the horizontal machine functions inside the dipoles. Two of the 
parameters are constrained by t,he match and two remain free. 
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