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I. Introduction 

The half cell shown in Fig. 1 illustrates a 
typical Chasman-Green electron or positron storage 
ring lattice specifically designed for photon beams 
from undulators and wigglers located in each disper- 
sion-free straight section. The need for a small 
particle beam emittance requires that the horizontal 
phase advance per cell should be in the neighborhood 
of 0.9 x 2n. Necessary chromaticity correcting sex- 
tupoles, SD and SF, located in the dispersion straight 
section introduce non-linear perturbations which limit 
the dynamic aperture because of amplitude dependent 
tune shifts. Two families of sextupoles, Sl and S2, 
can be introduced into the dispersion-free region to 
moderate the more harmful effects of SD and SF. The 
following sections discuss the nature of the pertur- 
bations and provide some guidelines for the adjustment 
of Sl and S,. 
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Fig. 1. Lattice and dispersion functions for Chasman- 
Green half cell. Reflective symmetry about 
either end. 

II. Distortion Functions 

The Hamiltonian used to describe the motion 
of charged particles in a lattice containing sextupole 
fields may be written as 
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(1) 

For V=O, J,, Jy are constants of the motion. Treating 
V as a perturbation, one introduces the generating 
function 

F(G+J,,$~>J~~,J~~> ~~=0,J~~+QyJ~y+G~6x~Oy~J~x~Jly~~~ (2) 

to produce new variables 

41z=4z+GJ GE > Jlz=JZ-Gg 8 a 3a (3) 
12 z 

If G satisfies the equation' 

G4 G4 X+ti+cs+v=o *x Y 

(4) 

the new Hamiltonian is 

Hl 
Jlx JIY 

=F-+BfV 
G +VJ (5) 

x Y Jlx % G4 lY Y 

and Jlx, Jly are constants of the motion to the first 
order in V. 

The function that satisfies Eq. (3) is 
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S x x 
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where 

ax = 4X + gx(s') - 6,(S) - nv,; 

a* = 4* + '$J*.(S') - b*.(s) - xv*; 

$z 
= $z ; vz = $ ; 7. = x, y; 

z z 

JIi = $xf2tiy ; v+ = vx f 2vy; 

C = cell length 

From Eq. (6), one can derive directly 

= -(2J1x)3'2~C3cos3(~x+ca+, 

+(2Jlx) 
112 2Jly(2ccos($,+~) 
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= (2Jlx)l'2"J1y:C+ cos(~++a++a+)-c_cos(4_+a-)) (8) 
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where typically the various C's and a's are defined as 

C=QT ; tan ja = $ ; j = 1, 3; 

and the corresponding A's and B's as 

Bj(j’clx) = r: 
'k 

k lhsin jxu x 
~0s j( ~$,(k)-$x~-~u,) j=l, 3 

B(Jlx) = c 
Sk 

k lhsin TIV cos( /jrxW-$, I-J,) 
x 

s 
B+($+(ti*) = C k k lhsin nv+ .os( ~$$k)-i~~-~v+) ; 

with A(Z) = B'(Z). 

Functions. 
shese functions have been called Distortion 

They are determined by the lattice 
structure and the distribution of sextupoles. The 
magnitude of the C's determines the maximum variati0r.s 
of amplitudes through the lattice about a constant 
value determined by Jlx, Jly. The first three 

distortion functions, B3, Bl, n for the lattice of 
Fig. 1 with the chromaticity correcting sextupoles 
turned ox are shown in the top half of Fig. 2. 

Fig. 2. Three distortion functions before (top) and 
after (bottom) improvement by turning on the 
harmonic suppression sextupoles. The chroma- 
ticity correcting sextupoles are at the 
right. The harmonic suppression sextupoles 
are at the left. 

The amplitude dependent tune shifts are 
determined by the magnitude of the S functions at the 
sextupole multiplied by the corresponding sextupole 
strengths. This can be shown as follows: 

< G4xVJlx + C1yVJly> ds (9) 

where the average is taken Qver the particle phases. 
Using Eqs. (7) and (8), one arrives *at 

Avx = 2 ; [-JIxSk(B3+3Bl)k + 2J,y:k(2B1-B++B-)k] (10) 

AV 
Y 

=+ [2J 
k 

lx~k(2BI-B++B-)k-Jly:k(4~+B++B-)k] (11) 

To reduce these shifts additional sextupoles 
must be added to the lattice in such a way as to 
either reduce the B functions at all sextupoles or to 
achieve cancellations by taking advantage of their 
phases. Since the tune shifts depend quadratically on 
the sextupole strengths, this is not easy to do in 
practice. The solution is easier if one knows which 
harmonics are causing most of the problem. 

III. Harmonic Expansion 

The expansion of V into harmonic components 
is accomplished by means of five sets of coefficients 
having the general form 

Rf i($-vB) = ZA .-i(m'd-a) -e - 
,'8 m m 

(12) 

RdB = ds 2nR = C 

The result (using a reflective symmetry point as 
reference) is 
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where 
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= j(@x-$x)+(jux-*)9 j = 1,3; 
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B+rrl 
'k 
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Substitution of the components into Eq. (6) 
yields the following harmonic expansion for the 
Distortion Functions; 

3A . 
B. = 

J w Jm cos[ j(J',,-uxO)+nB] 
m jux- * 

j=1,3 

3Blm ;=z- 
v - m cos[$Jx-v,9+mB] 

m x 

B* = 3B* m 
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m "f- m 

(X. Y. i-133 started from this form of the distortion 
Functions and worked backwards to arrive at the 
Collins formula given by Eqs. (7) and (8)). Finally 
by direct substitution of these expansions into 
Eqs. (10) and (ll), and identification of the sums 
over k, one arrives at the harmonic expansion of the 
amplitude-dependent tune shifts 

A”x = Mll.Jlx+~12.Jlx (15) 
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IV. Predictions and Improvements 
by Harmonic Suppression 

The lattice shown in Fig. 1 has tunes of vx 
= 0.88, " = 0.36 per cell. With the chromaticity 
correctin: sextupole turned on, the calculated 
amplitude dependent tune shifts per cell are 

Avx(units lo+) = 7.18 2 N 
2 

+ 1.5 N 
x Y 

&uy(units 10V6) = 3.02 N x 2 + 0.98 NY2 

N,’ = 2 , NY2 a > , c = natural emittance 

Tracking programs show that the limit of stability on 
the median plan is at Nx = 41, where the tune per cell 
approaches 1. The tune shift increases rapidly as the 
one approaches the fundamental instability. 

In fact, it is possible to predict the total 
dynamic aperture for this lattice using only the 
harmonic components A33, Ail> and Bll. It can be 

shown that for constant N 
Y ' 

the horizontal stable 
aperture should extend from Nxl to Nx2 where 

N = - 2 (F+l) ; (1‘3) Xl 

N x2 = +(2F-1); 

(vx-l) 
x = 

0 2J;(3All+A33) 

F~J-FyTyGz 

x 

The prediction of Eq. (16) and the dynamic aperture 
obtained by tracking are shown in Fig. 3. 

The amplitude dependent tune shifts for the 
lattice with the chromaticity correcting sextupoles 
turned on is much too large for stability in a ring 
containing uncorrected orbit errors. Inspection of 
Eqs. (15) and (16) suggest that the most efficient use 
of the harmonic suppression sextupoles S1 and S2 is to 
reduce Al1 and Bll. It turns out that if these sextu- 
poles are tuned such that Al1 and Bll are reduced to 
about 30% of their original values, the coefficient of 
Jlx in Eq. (10) is reduced to zero. The resultant 
increase in dynamic aperture is shown in Fig. 3. 

-1 

Nx 

Fig. 3. Inner curves are the measured (solid) and 
calculated (dotted) dynamic aperture without 
harmonic suppression sextupoles. Outer is 
the measured dynamic aperture with the 
harmonic suppression sextupoles. 

(Eq. (10) is no longer valid, since with Al1 and Bll 
reduced, other higher order resonances become effec- 
tive). The corresponding decrease in the Bl and B 
distortion function is shown in the lower half of 
Fig. 2. The amplitude dependent tune shifts are 
reduced to 

Avx(units 10e6) = 0.00 Nx2 + 0.18 NY2 

Avx(units 10T6) = 0.36 N 2 + 0.24 NY2 
x 

The above analysis demonstrates that if the 
causes of stability limitations are known, the 
corrections necessary to improve stability can be 
calculated. The results have also been tested using 
dynamic aperture searches for a 40-cell ring with 
uncorrected orbit distortion errors. The results show 
that, because attention has been given to reducing the 
amplitude tune shifts, the improvement provided by the 
harmonic sextupoles is maintained. 
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