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ACHROMATIC DISSIPATIVE FOCUSING
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ADSTDArT [5], uniess new schemes for the final focus can be
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L . The negative result reported before [2], a plles to
The energy loss due to synchrotron radiation during . . ’
beam-beam collisions can be exploited to obtain an t:He Hamiltonian motion of charged particle beams in ‘the
] ; . . field of quadrupole magnets: it does not take into
achromatic focusing lens. We consider the successive

between 2 electron

collisions and two
Colitsior ana two

bunches with the same number of particles: the first is
a bunch of electrons and the second of positrons.
Owing to the energy loss during the first collision, the
two successive radial kicks do not compensate each
..... and, in thin lens approximation, there s a
residual focusing effect which is independent of the
initial electron energy. A proper choice of the radial
density profile of the two bunches leads to a linear
achromatic focusing. This principle could be applied to
reduce the final spot size in future electron-positron
colliders with very large energy spread.
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There is a close analogy between light-ray optics and

particle trajectories in high energy accelerators and
storage rings. Magnetic quadrupoles in high energy
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beam optics play the role of glass lenses in light optics,

while particle energy is the counterpart of light colour
(or frequency). The dependence of the focal length of

a magnetic quadrupole on particle energy gives rise to
chromatic  aberrations similar to those affecting
conventional optical systems as a consequence of the
dispersive properties of glass lenses. However, by a

proper choice of different glasses (e.g. crown and flint

glasses [1], whose refractive indices have different
variations with the colour of light), one can design
focusing lenses which are achromatic over a broad
spectrum of light frequencies. In beam optics, on the

contrary, we could say that "only one type of glass is

available”, since the focusing strength of ail magnetic
lenses decreases with the same law for increasing
particle energy. As a consequence, one can show that
any strictly achromatic" system made of magnetic
quadrupoles is also and,

stmctly defocusing” [2]
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In circular machines, this negative result is usually

circumvented by means of nonlinear elements (magnetic
sextupoles), which allow partial compensation of the
chromatic effects associated with quadrupcles.

However, the motion of particles with large betatron
amplitudes is strongly affected by such nonlinear
elements and becomes unstable beyond a limit known as
dynamic aperture of the machine [3]. Moreover, the
sextupole correction scheme is based on the inherent
momentum dispersion in the bending arcs. For future
electron-positron colliders in the TeV energy range, a
dispersive system of acceptable length may not be
practicable, because of the emittance growth associated
with quantum fluctuations of the synchrotron radiation
in the bending magnets. On the other hand, a final
energy spread of the order of several per cent seems
unavoidable in such future linear colliders [4], since
even larger spreads are required during acceleration in
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camping
oscillations and thus to ensure beam stability against
transverse wakefields. As a consequence, the spot size
at the interaction point and then the maximum achievable
luminosity will be seriously limited by chromatic effects
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account energy losses due to synchrotron radiation. In
terms of the previous analogy with conventional optics,
this would correspond to neglecting light absorption in
the medium and the associated phenomenon of anomalous
dispersion [6]. In order to discuss the focusing
properties of dissipative systems, let us consider two
successive, short magnetic lenses of equal strength and
opposite polarity. They could be quadrupole magnets,
in which case our discussion is restricted to a single
betatron plane, plasma lenses, or bunches of relativistic
particles with opposite charge. Neglecting synchrotron
radiation, the two successive radial kicks experienced
by an electron travelling through the system at a speed
close to that of light would compensate each other.

However, owing to synchrotron radiation energy loss in
the first lens (or to further radiation in the region
between the two lenses, which could consist of a short
magnetic wiggler), the electron is lighter when it
reaches the second lens and the angular deflection
produced by the second kick is stronger than the
deflection in the first lens. We will show that the
residual angular deflection is independent of the
electron energy. Therefore, if the second lens s

focusing and the radial dependence of the synchrotron
energy loss is properly combined with the dependence of
the two kicks, one can obtain a linear, achromatic
focusing system.

To illustrate this principle, in Section 2 we discuss
the case where the two lenses consist of relativistic

bunches of particles with opposite charge, e.g.
electrons and positrons. However, owing to quantum
flismtiiatinne Af tha cuncrhratran radiatian tha racidiial
fluctuations of the synchrotron radiation, the residual

focusing strength of the system has a random component

which, though still independent of particle energy,
induces a broadening of the beam spot size. Section 3
contains a numerical discussion of this effect, leading to

dissipative

the conclusion that our achromatic dissipative

focusing

-4
scheme could become of practical interest only for beams
with an energy spread considerably larger than ten per
cent.

2. BEAM-BEAM COLLISIONS AND RESIDUAL FOC NG

We consider the successive collisions between a
refativistic electron with radial displacement r and two
short bunches with the same number of particles N:
the first has a negative charge -Ne and the second a
positive charge Ne. Both these bunches travel at
relativistic speed in the direction opp051te to that of the
Fig. I} |ney are dssumec IO
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Fig. 1 Geometry of the beam-beam collisions.
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be cylindrical L and

density A(r)

bunches of length linear charge

+

Ar) = £ (Ne/L) f(r). )

Here f(r) is a dimensionless function expressing the
fraction of particles contained within a radius r. From
Gauss law, the radial electric field E(r) is given by
E(r) =2 X(r)/r. (2)
Since the unches are relativistic, the azimuthal
magnetic field B{(r) is approximately equal to E(r)
and the radial Lorentz force F(r) experienced by the
incoming electron during the two successive

collisions can be written

F(r) = - 2eE(r) = ¢ 4 (Ne2/L) f(r)/r. (3)
If the electron velocity remains close to ¢ and the
radial slope r' = dr/ds of its trajectory is small

compared to unity, the equation of the trajectory reads

Ymc2 d2r/ds? = F(r), (4)
where is the relativistic Lorentz factor of the
electron. The electron energy loss per unit distance,
due to synchrotron radiation, can be written [6]

Y

41,._-2\ Jde = Ny ___2 A.4/‘2 4=
GLymc™,/as = - 4/a re mc y /P, 1o)
2 2 . . .
where r_ = e“/mc“ is the classical electron radius and
) the instantaneous radius of curvature of the
trajectory For small radial slopes r', we take
1/p = |d2r/d52| = [F(r)|/ymeZ. (6)

Therefore, from Eq. (3), the equations for the electron
trajectory and energy loss can be written

1ec

d?e7ds? = £ 4 (N/y) (r /L) £(R)/r, ()

d(1/y)/ds = 32/3 N2 (¢ 3/L2) [£(r)/r]2 (8)

The interesting fact is that the instantaneous rate of

variation of the slope r' depends on 1/y, but the

rate of variation of 1/y is independent of vy itself
(i.e. independent of the electron energy).

We will now solve Egs. (7) and (8) in thin lens
approximation. This means that we assume the radial
position r of the incoming electron to be constant
during the two successive collisions: the only effect of
the collisions is therefore to char}ge the slope r' of
the trajectory and the energy ymc“. From Eq. (8), we
see that the inverse of the Lorentz factor y(s)
increases linearly with the longitudinal coordinate s of
the electron

y(s) = 17y, 3273 N2 (e 3/ [f(/r) s, (@)

where Yo is the Lorentz factor corresponding to the
initial electron energy. Therefore, from Eq. (7)., the
variation of slope Ar'(s) of the electron trajectory

during the first collision is given by

Ar'(s) = 4N (re/L) [f(r)/r]

{s/y, * 16/3 N* (r /L% [f(r)/r] s%). (10)
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bunches travel at near the speed of light, each collision

el

takes place over a length L/2, i.e. half the bunch
length. Thus the total wvariation of slope A;r" =
Ar'(L/2)  of the electron trajectory after the first

collision is

Aqr' = 2N (r/ /r] {uy, v 83 N2 R 3 /r)?

v (ro/L) (f(r}/r] {L Yo T 8/3 N° r, [f(r)/r1<}.
an

In a similar way, the variation of slope Azr' due to

the second collision is

Agr' = <IN (rg/L) [F(r)/r] Uy + 873 N2 e 3 [£(0)/01?)

wle=t
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electron after the first collision (see Fig. 2).
synchrotron radiation, the effect of
defocusing kick A]r' is weaker than
second, focusing kick A,r',

........ electron lighter.
slope Ar' after the two successive collisions
algebraic sum of A;r’ and A,r’; from Egs.
and (12) we obtain

whera
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Owing to
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that of the
because after the first

The total wvariation of

is the
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Ar' = et s Aprt = 2N k|

f(r)/r1 (1
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/N

= - 323 N (e Y0 [/, (13)
Since it depends on the variation of the reciprocal
Lorentz factor 1/y, this residual focusing effect is
independent of the electron energy. Let us remark
that, contrary to the alternating gradient scheme (where
there can be a focusing effect for both the directions of
motion), by reversing the order of the two successive
bunches in our achromatic dissipative focusing scheme,
the sign of the residual angular deflection is opposite.

-Ne Ne
"
¥ B e
T e
DEFOCUSING stronger FOCUSING s
(lighter particle)
First collision Second collision
Fig. 2 Electron trajectory during the two collisions.
From Eq. (13), we see that the total variation of
slope Ar’ depends on the radial displacement r of
the incoming electron through the factor [f(r)/r]~.
Therefore, in order to obtain a linear focusing effect,

the dimensionless function

£(r)

fr) = (r/R)Y3,

must be of the form

(14)
where R is the characteristic radius of the two
bunches. Recalling that f(r) expresses the fraction
of particles contained within a radius r [see Eq. (1)],
this corresponds to a spatial charge density e(r)
given by

(Ne/LR2) (R/M%/3.

p(r) = 2/3m (15)

have
d:ll;ny, varies
density profile, reaching a finite, maximum value on the
bunch axes and dropping to zero in the vicinity of the
bunch radius R. We will neither discuss the technical

difficulties connected with the production of bunches

3 we

vkt b
winicn

charge

ifeaini

plottefiz/sthis theoretical

e A
ariva

as a

a

obin
more SUic

PAC 1987



pir)

I

!

1

|

i

|

1

|

|

i

I'sh'c
LNe | - theoretical., 2
ImRL -

0 R v
Fig. 3 Radial density profile for the bunches.

having such radial profiles nor the tolerances allowed.
However, the deviation from linearity of the residual
focusing effect (13), resulting from a charge density
slightly different from the theoretical density (15),

wouid presumably lead to a negligible broadening of the
beam spot size compared to that caused by chromatic or
geometric aberrations in a conventional final focus.
Using expression (14) for f(r), the residual angular
deflection (13) can be written

ar' = - 32/3 (r /L) (Nre/R)3 (r/R). (18)

We are interested in the case where the synchrotron
energy loss of the electron is only a small fraction of its
initial energy. Therefore, using Eq. (9) and denoting
by € = sz/yol = [Y(L)‘Yol/Yo the relative energy
loss, we assume

e =323 v, (r/L) (Nr/R? (/R)PB <1 am)

Finally, to be consistent with our thin lens
approximation, we shall require that the radial deviation
&r, experienced after the first collision by an incoming
electron with initial slope of the trajectory r' = 0, be
much smaller than the initial displacement r. For a
typical displacement of the order of the bunch radius
R, the relative deviation is

Sr/R = (L/YOR) (Nre/R] << 1. (18)

3. QUANTUM MECHANICAL LIMITATIONS

The results obtained in the previous section do not take
into account the quantum nature of synchrotron
radiation. In particular, expression (5) for the electron
energy loss is valid only in the so-called classical
regime [7], i.e. when the ratio & = uc/yomc between
the critical energy of the emitted photons and the initial
particle energy is much smalier than unity. Therefore,
from Eqgs. (3), (6) and (14), we shall require

- 2 )
£=3/2 y," KJp = 6y, (KJ/L) (Nr/R) << 1, (19)

where X_ = 4f/mc is the reduced Compton wavelength
of electron and we have assumed a typical radius r =
R. Furthermore, owing to the finite number of radiated
photons Nph’ the residual achromatic focusing strength
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(13) is atfected by statistical fluctuations: since the

emission process obeys a Poisson distribution, the
resulting r.m.s. relative variation of the residual
focusing strength is proportional to T/VNph.
Therefore we shall require that Nph be a large
number [8]

Nph =5/2v3 a L yv/p = 10/v3 «a (Nre/R) >» 1, (20)
where a = ez/'ﬁc is the fine structure constant and,
again, we have assumed r = R. This is by far the
most important limitation of our focusing scheme.
Indeed, as a consequence of quantum fluctuations, the

broadening of the beam spot size is comparable to that
produced by chromatic effects for a relative energy
spread of the order of 1/VN n- Since the average
number of photons radiated By an electron during
beam-beam collisions can hardly approach a hundred,
our achromatic focusing scheme becomes of practical
interest only for beams with an energy spread
considerably larger than ten per cent. It is interesting
to remark that Egs. (16) to (20) all contain the same
dimensionless factor (Nr_ /R).

To conclude the discussion,
main results as follows:

we can summarize the

£ = (5-10'/N)3 (R/1mm)* (L/10cm) 119 cm,
e = (v,/10%) (/5102 (1Imm/R)Z (10em/L) 0.59,

s5r/R = (105/v) (N/5:10'%) (lmm/R)? (L/10cm) 0.14,

£ = (v,/10% (N/5-10") (Imm/R) (10cm/L) 0.03,
Noh = (N/5-10"%) (1mm/R) 60,
where f denotes the achromatic focal length

corresponding to Eq. (16) and we have assumed suitable
numerical wvalues for the wvarious parameters. The
constraint on &r/R, which follows from the thin lens
approximation, together with the required large number
of emitted photons N _,, leads to a rather extreme
value of 240 kA for the peak current in the two
bunches. Nevertheless, the implementation of the
principle of achromatic dissipative focusing would become
much more feasible if one could devise a different
scheme, avoiding the thin lens approximation. For
example a 1 TeV electron, going through a wiggler
100 m long with a magnetic field of 1 T, would radiate
600 photons by losing only 13  per cent of its initial
energy. By a proper arrangement of focusing and
defocusing quadrupoles or plasma lenses, one could then
obtain a thick achromatic system of practical interest
already for beam energy spreads of a few per cent.

REFERENCES

—_

. J. Strong, "Concepts of Classical Optics”,
Freeman, San Francisco (1958).
K.G. Steffen, "High Energy Beam Optics",
Wiley, New York (1965).
3. G. Guignard and J. Hagel, CERN-LEP-TH/85-3
(1985).
H. Henke, same Proc.
. J. Rees, Stanford report
SLAC-PUB-4073 (1986).
6. J.D. Jackson, "Classical Electrodynamics"
Wiley, New York (1962).
7. T. Himel and J. Siegrist, Stanford report
SLAC-PUB-3572 (1985).
8. K. Yokoya, KEK Preprint 85-53 A (1985).

L]

U b

.

PAC 1987



