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ABSTRACT 

The energy loss due to synchrotron radiation during 
beam-beam collisions can be exploited to obtain an 
achromatic focusing lens. We consider the successive 
collisions between a relativistic electron and two short 
bunches with the same number of particles: the first is 
a bunch of electrons and the second of positrons. 
Owing to the energy loss during the first collision, the 
two successive radial kicks do not compensate each 
other and, in thin lens approximation, there is a 
residual focusing effect which is independent of the 
initial electron energy. A proper choice of the radial 
density profile of the two bunches leads to a linear 
achromatic focusing. This principle could be applied to 
reduce the final spot size in future electron-positron 
colliders with very large energy spread. 

1. INTRODUCTION 

There is a close analogy between light-ray optics and 
particle trajectories in high energy accelerators and 
storage rings. Magnetic quadrupoles in high energy 
beam optics play the role of glass lenses in light optics, 
while particle energy is the counterpart of light colour 
(or frequency). The dependence of the focal length of 
a magnetic quadrupole on particle energy gives rise to 
chromatic aberrations similar to those affecting 
conventional optical systems as a consequence of the 
dispersive properties of glass lenses. However, by a 
proper choice of different glasses (e.g. crown and flint 
glasses [l], whose refractive indices have different 
variations with the colour of light), one can design 
focusing lenses which are achromatic over a broad 
spectrum of light frequencies. In beam optics, on the 
contrary, we could say that “only one type of glass is 
available”, since the focusing strength of all magnetic 
lenses decreases with the same law for increasing 
particle energy. As a consequence, one can show that 

any “strictly achromatic” system made of magnetic 
quadrupoles is also “strictly defocusing” [2] and, 
therefore, “strictly useless” for the confinement of 
particles In accelerators. 

In circular machines, this negative result is usually 
clrcumvented by means of nonlinear elements (magnetic 
sextupoles), which allow partial compensation of the 
chromatic effects associated with quadrupoles. 

However, the motion of particles with large betatron 
amplitudes is strongly affected by such nonlinear 
elements and becomes unstable beyond a limit known as 
dynamic aperture of the machine [3], Moreover, the 
sextupole correction scheme is based on the inherent 
momentum dispersion in the bending arcs. For future 
electron-posttron colliders in the TeV energy range, a 
dispersive system of acceptable length may not be 
practicable, because of the emittance growth associated 
with quantum fluctuations of the synchrotron radiation 
in the bending magnets. On the other hand, a final 
energy spread of the order of several per cent seems 
unavoidable in such future linear colliders [4], since 
even larger spreads are required during acceleration in 
order to provide Landau damping of the betatron 
oscillations and thus to ensure beam stability against 
transverse wakeflelds. As a consequence, the spot size 
at the interaction point and then the maximum achievable 
lumlnoslty will be seriously lImIted by chromatic effects 

[51, unless new schemes for the final focus can be 
devised. 

The negative result reported before [2], applies to 
the Hamiltonian motion of charged particle beams in the 
field of quadrupole magnets: it does not take into 
account energy losses due to synchrotron radiation. In 
terms of the previous analogy with conventional optics, 
this would correspond to neglecting light absorption in 
the medium and the associated phenomenon of anomalous 
dispersion [6]. In order to discuss the focusing 
properties of dissipative systems, let us consider two 
successive, short magnetic lenses of equal strength and 
opposite polarity. They could be quadrupole magnets, 
in which case our discussion is restricted to a single 
betatron plane, plasma lenses, or bunches of relativistic 
particles with opposite charge. Neglecting synchrotron 
radiation, the two successive radial kicks experienced 
by an electron travelling through the system at a speed 
close to that of light would compensate each other. 
However, owing to synchrotron radiation energy loss in 
the first lens (or to further radiation in the region 
between the two lenses, which could consist of a short 
magnetic wiggler), the electron is lighter when it 
reaches the second lens and the angular deflection 
produced by the second kick is stronger than the 
deflection in the first lens. We will show that the 
residual angular deflection is independent of the 
electron energy. Therefore, if the second lens is 
focusing and the radial dependence of the synchrotron 
energy loss is properly combined with the dependence of 
the two kicks, one can obtain a linear, achromatic 
focusing system. 

To illustrate this principle, in Section 2 we discuss 
the case where the two lenses consist of relativistic 
bunches of particles with opposite charge, e.g. 
electrons and positrons. However, owing to quantum 
fluctuations of the synchrotron radiation, the residual 
focusing strength of the system has a random component 
which, though still independent of particle energy, 
induces a broadening of the beam spot size. Section 3 
contains a numerical discussion of this effect, leading to 
the conclusion that our achromatic dissipative focusing 
scheme could become of practical interest only for beams 
with an energy spread considerably larger than ten per 
cent. 

2. BEAM-BEAM COLLISIONS AND RESIDUAL FOCUSING 

We consider the successive collisions between a 
relativistic electron with radial displacement r and two 
short bunches with the same number of particles N: 
the first has a negative charge -Ne and the second a 
positive charge Ne. Both these bunches travel at 
relativistic speed in the direction opposite to that of the 
incoming electron (see Fig. 1). They are assumed to 
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Fig. 1 Geometry of the beam-beam colilsions. 
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be cylindrical bunches of length L and linear charge 
density h(r) 

h(r) = + (Ne/L) f(r). (1) 

Here f(r) is a dimensionless function expressing the 

fraction of particles contained within a radius r. From 
Gauss law, the radial electric field E(r) is given by 

E(r) = 2 h(r)/r. (2) 

Since the bunches are relativistic, the azimuthal 
magnetic field B(r) is approximately equal to E(r) 
and the radial Lorentz force F(r) experienced by the 
incoming electron during the two successive 
collisions can be written 

F(r) = - ZeE(r) = ? 4 (Ne2/L) f(r)/r. (3) 

If the electron velocity remains close to c and the 
radial slope r’ f dr/ds of its trajectory is small 
compared to unity, the equation of the trajectory reads 

ymc2 d2r/ds2 = F(r), (4) 

where y is the relativistic Lorentz factor of the 
electron. The electron energy loss per unit distance, 
due to synchrotron radiation, can be written [6] 

d(ymc2)/ds = - 213 re mc2 y4/p2, (5) 

where r = e2/mc2 IS the classical electron radius and 

P the einstantaneous radius of curvature of the 
trajectory. For small radial slopes r’, we take 

l/p = ,d2r/ds2, = IF(r)l/ymc2. (‘3) 

Therefore, from Eq. (3), the equations for the electron 
trajectory and energy loss can be written 

d2r/ds2 = ? 4 (N/y) (r,/L) f(r)/r, 

d(l/y)/ds = 32/3 N2 (re3/L2) [f(r)/r12. 

The interesting fact is that the instantaneous rate of 
variation of the slope r’ depends on l/y, but the 
rate of variation of l/Y is independent of y itself 
(i.e. independent of the electron energy). 

We will now solve Eqs. (7) and (8) in thin lens 
approximation. This means that we assume the radial 
position r of the incoming electron to be constant 
during the two successive collisions: the only effect of 
the collisions is therefore to cha ge the slope r’ of 

9 the trajectory and the energy ymc From Eq. (8), we 
see that the inverse of the Lorentz factor Y(S) 
increases linearly with the longitudinal coordinate s of 
the electron 

l/y(s) = l/y0 ‘+ 32/3 N2 (re3/L2) [f(r)/r]2 s, (9) 

where y is the Lorentz factor corresponding to the 
initial eleOtron energy. Therefore, from Eq. (7), the 
variation of slope Ar’(s) of the electron trajectory 
during the first collision is given by 

Ar’(s) = 4N (t-,/L) [f(r)/r] 

IS/Y0 + 16/3 N2 (r 3/L2) e [f(r)/r12 s2). (10) 

Since both the incoming electron and the two opposite 
bunches travel at near the speed of light, each collision 

takes place over a length L/2, i.e. half the bunch 
length. Thus the total variation of slope 
Ar’(L/2) 

A, r’, E 
of the electron trajectory after the first 

collision is 

A,r’ = 2N (r,/L) [f(r)/r] (L/y, + 8/3 N2 re3 [f(r)/r12}. 

(11) 

In a similar way, the variation of slope A2r’ due to 
the second collision is 

A2r’ = -2N (r,/L) [f(r)/r] {L/y, + 8/3 N2 re3 [f(r)/r12) 

(12) 

where Yl s y(s=L/2) is the Lorentz factor of the 
electron after the first collision (see Fig. 2). Owing to 
synchrotron radiation, the effect of the first, 
defocusing kick A, r’ is weaker than that of the 
second, focusing kick A r’, 

3l 
because after the first 

collision the electron is lig ter. The total variation of 
slope Ar’ after the two successive collisions is the 
algebraic sum of A,r’ 
and (12) we obtain 

and A2r’; from Eqs. (9), (11) 

At-’ = A,r’ + A 2 r’ = 2N r e [f(r)/r] (l/y, - l/y,) = 

= - 32/3 N3 (r,‘/L) [f(r)/r13. (13) 

Since it depends on the variation of the reciprocal 
Lorentz factor l/Y, this residual focusing effect is 
independent of the electron energy. Let us remark 
that, contrary to the alternating gradient scheme (where 
there can be a focusing effect for both the directions of 
motion), by reversing the order of the two successive 
bunches in our achromatic dissipative focusing scheme, 
the sign of the residual angular deflection is opposite. 
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Fig. 2 Electron trajectory during the two collisions. 

From Eq. (13), we see that the total variation of 
slope Ar’ 
the 

depends on the radial displacement r ff 
incoming electron through the factor [f(r)/rl 

Therefore, in order to obtain a linear focusing effect, 
the dimensionless function f(r) must be of the form 

f(r) = (r/R)4’3, (14) 

where R is the characteristic radius of the two 
bunches. Recalling that f(r) expresses the fraction 
of particles contained within a radius r [see Eq. (,)I, 
this corresponds to a spatial charge density p(r) 
given by 

p(r) = 2/3n (Ne/LR2) (R/r)2i3. (15) 

In Fig. 3 we have plotte-$,$his theoretical charge 
density, which varies as r , and a more realistic 
density profile, reaching a finite, maximum value on the 
bunch axes and dropping to zero in the vicinity of the 
bunch radius R. We will neither discuss the technical 
difficulties connected with the production of bunches 
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Fig. 3 Radial density profile for the bunches. 

having such radial profiles nor the tolerances allowed. 
However, the deviation from linearity of the residual 
focusing effect (13), resulting from a charge denslty 
slightly different from the theoretical density (15), 

wouid presumably lead to a negligible broadening of the 
beam spot size compared to that caused by chromatic or 
geometric aberrations in a conventional final focus. 
Using expression (14) for f(r), the residual angular 
deflection (13) can be written 

At-’ = - 32/3 (r,/L) (Nre/R)3 (r/R). (16) 

We are interested in the case where the synchrotron 
energy loss of the electron is only a small fraction of its 
Initial energy. Therefore, using Eq. (9) and denoting 

by E = iAy/yol = lY(L)-Yol/Yo the relative energy 
loss, we assume 

E I 32/3 y, (re/L) (Nre/R)2 (r/R)2’3 << 1. (17) 

Finally, to be consistent with our thin lens 
approximation, we shall require that the radial deviation 
6r, experienced after the first collision by an incoming 
electron with initial slope of the trajectory r’ z 0, be 
much smaller than the initial displacement r. For a 
typical displacement of the order of the bunch radius 
R. the relative deviation is 

6r/R = (L/yoR) (Nre/R) << 1. (18) 

3. QUANTUM MECHANICAL LIMITATIONS 

The results obtained in the previous section do not take 
into account the quantum nature of synchrotron 
radiation. In particular, expression (5) for the electron 
energy loss is valid only in the so-calle 
regime [7], i.e. when the ratio < = uc/yomc 9 

classical 
between 

the critical energy of the emitted photons and the initial 
particle energy is much smaller than unity. Therefore, 
from Eqs. (3), (6) and (14), we shall require 

< = 3/2 yo2 ;x,/ p = 6 y, (Xx,/L) (Nre/R) << 1, (19) 

where K = */mc is the reduced Compton wavelength 
of electrc?n and we have assumed a typical radius r f 
R. Furthermore, owing to the finite number of radiated 
photons Nob, the residual achromatic focusing strength 

(13) is affected by statistical fluctuations: since the 
emission process obeys a Poisson distribution, the 
resulting r.m.s. relative variation of the residual 
focusing strength is proportional to 
Therefore we shall require that Nph be ‘;;“‘i”,?& 
number [8] 

Nph 
= 5/2\/3 a L y/p 1: 10/t/3 a (Nre/R) >> 1, (20) 

where a = e2/+Ec is the fine structure constant and, 

again, we have assumed r I R. This is by far the 

most important limitation of our focusing scheme. 

Indeed, as a consequence of quantum fluctuations, the 
broadening of the beam spot size is comparable to that 
produced by chromatic effects for a relative energy 
spread of the order of l/v/N Since the average 

number of photons radiated Eh’ Y an electron during 
beam-beam collisions can hardly approach a hundred, 
our achromatic focusing scheme becomes of practical 

interest only for beams with an energy spread 
considerably larger than ten per cent. It is interesting 
to remark that Eqs. (16) to (20) all contain the same 
dimensionless factor (Nr /R). 

To conclude the disceussion, we can summarize the 
main results as follows: 

f = (5.1014/Nj3 (R/lmm14 (L/lOcm) 119 cm, 

E max 
= (yo/106) (N/5.lO14)2 (lmm/RI 2 (lOcm/L) 0.59, 

Et-/R = (106/yo) (N/5.1014) 

< I (y /106) 
0 

(N/5.1014) 

Nph 
I (N/5.1014) (lmm/R) 

where f denotes the 

(lmm/R)2 (L/lOcm) 0.14, 

(lmm/R) (lOcm/L) 0.03, 

60, 

achromatic focal length 
corresponding to Eq. (16) and we have assumed suitable 
numerical values for the various parameters. The 
constraint on 6r/R, which follows from the thin lens 
approximation, together with the required large number 
of emitted photons N , leads to a rather extreme 
value of 240 kA forphthe peak current in the two 
bunches. Nevertheless, the implementation of the 
principle of achromatic dissipative focusing would become 
much more feasible if one could devise a different 
scheme, avoiding the thin lens approximation. For 
example a 1 TeV electron, going through a wiggler 
100 m long with a magnetic field of 1 T, would radiate 
600 photons by losing only 13 per cent of its initial 
energy. By a proper arrangement of focusing and 
defocusing quadrupoles or plasma lenses, one could then 
obtain a thick achromatic system of practical interest 
already for beam energy spreads of a few per cent. 
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