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We investigate the stability of the driving electron or positron 
beam in the plasma wakefield accelerator. Although the beam 
is subject to self-focusing, filamentation and two stream insta- 
bility, we find that all of these can be annihilated by introduc- 
ing thermal energy and an axial magnetic field. 

I. Introduction 
In the scheme known as the Plasma Wakefield Accelerator 

(PWFA) an electron bunch traversing a plasma excites large 
plasma wave which can accelerate a trailing bunch of elec- 
trons or positrons. Chen et al.[l] [2] first studied the PWFA 
scheme using asingle particle model. Later Ruth et al.[3/ recog- 
nized the similarity between PWFA and wake field accelerator 
scheme using EM cavities. Once this is seen, the “fundamental 
theorem of beam loading”[4] k nown in accelerator physics can 
be applied to the PWFA. This theorem states that for a sy- 
metric driving bunch the maximum energy gain for the driven 
electrons cannot exceed 27emcz, where 7amc’ is the energy of 
driving beam electron. (i.e. the transformer ratio R < 2). This 
limitation can be overcome by introducing asymmetric charge 
distributions (51 [G] for the driver, in which case the energy gain 
can be up to k,<e-yemc*, where (0 is the length of a properly 
shaped driving bunch and k,, = ‘;“. 

For a driving bunch with a finite extent, longitudinal insta- 
bility such as the two stream instability and transverse effects 
such as self-focusing [7] and filamentation [S] are of concern. 
The longitudinal instability has been examined previously [9] 
and can be avoided. The transverse instabilities can cause dis- 
tortion of the bunch shape. 

In this paper we examine the transverse instabilities of the 
driving beam in the plasma wakefield accelerator analytically 
and with 2-D computer simulation. The type of transverse 
instability that dominates depends strongly on the beam’s ra- 
dius. For a narrow beam of radius “a” of order c/r+,, the beam 
is strongly self-focused by its own transverse wake . Wide 
beams (u > c/w,) are subject to the Weibel instability In sec- 
tion II we study the self-focusing of beams by their own wake- 
fields. In section III we investigate the Weibel instability of a 
broad beam and discuss the suppression of such an instability. 
We show that the driving beam can be stablized by the intro- 
duction of one or both of the following: a) transverse thermal 
energy spread in the driving bunch; b) an axial magnetic field. 
The transverse energy required for stabilization is independent 
of beam energy (7) and so is modest for high energy beams. 
The magnetic field required is proportional to 7’j2. 

II. Self-focusing 

The self-focusing of the driving beam in a plasma is a result 

of the transverse wake. Physically it arises beause the plasma 
electrons respond to the beam’s space charge by moving away 
from the beam. The remaining plasma ions thus neutralize 
the space charge of the beam. This enables the beam current 
generated azimuthal magnetic field Be to pinch the beam by 
the u, x & force (current shielding is less effective than charge 
shielding). 

The strength of the self-focusing depends on the radius and 
the density of the beam. For a wide beam the pinching is not 
severe since the plasma sets up a cancelling return current. For 
a narrow beam (u z c/e+) most of the return current is on the 
outside of the beam. Thus within the beam, Bs remains and 
strongly pinches a narrow beam. 

To quantify our discussion of self-focusing we consider the 
wakefields produced by first driving beam with parabolic trans- 
verse the density distribution p(r, c) = /(c) 1 o(r) 

u(r) = 
( 

Uo( 1 - r*/u*) , r 5 a 
0 ,r >a 

a is the beam radius. The longitudinal and transverse wake- 
fields are given by [3] [IO] 

K2(k,a)lo(k,r) + f(l - $) - & . 
I 

i or df’/(Sl)C&(f’ - 5) (2) 

WL = 1 
r 

8rrac, K2(k,a)ll(k,r) - -) s 
k,az 1 

/ or d~‘/(SIb~~bk’ - s) 

where k, = c/wp, W/l = eEZ and lV, = e(E, + p,0) x 
(E, + Be) The radial dependencies of WA and W/l are plotted 
in Fig. 1 for beams of radius kru = 1 and k,a = 10. 
Explain that the transverse wake within the driving bunch is 
always self-focusing [7] 181. 

Ruth and Chen 111) showed how a flat rather than a parabolic 
driving beam profile,improves both the emittance and energy 
spread of the trailing bunch. Such a profile also reduces the 
self- focusing of the driving bunch. This can be seen by con- 
sidering the wakefields for a driving profile of the form 

u(r) = 7 
1 

,ria 
,r > a 

The wakefields are then 

WI, = -2~0~ {I - k,a . Kl(k,a) * &(k,r)} . 

/ ’ d~‘f(+~kp(~ - s) (4) 
0 
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WI = 27~.7oK1(b4~1(h~) * 
/ or dc’/(S))=%h’ - f) 

W, and WI, versus krt are plotted in Fig. 2 for kpa = 1 
and k,a = 10. Note that the similarity between Fig. l-a and 
2-a suggests that the exact form of the radial profile is not 
important for narrow beams. For wide beams Figs. l-b and 2- 
b show that uniform radial profiles give much smaller WA and 
more uniform WI than do parabolic profiles. Physically the 
plasma waves excited by a flat beam are quasi-one-dimensional. 
Most of the plasma oscillation is in the longitudinal direction 
and W, is nearly zero except near the edges. 
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Figure 1 Wakefields vs. r for a parabolic beam profile: 
(a) beam radius a = lc/w, (b) a = lOc/w,. 

0 
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Figure 2 Waiefields vs. r for a uniform beam Profile: 
(a) b earn radius a = lOc/w, (b) u = lOc/w,. 

The self-focusing and betatron oscillation of a narrow beam 
is illustrated by the Z-D simulation depicted in Fig. 3. For this 
and the other simulations in this paper the particle-in-cell code 
ISIS[lPI was used. This model solves Maxwell’s equations in 
cylindrical coordinates (r, z) subject to the current and charge 
densities of the plasma and beam particles. In order to model 
a high transformer ratio example[S], we shaped the current 
such that p(c) = pc for 0 < k,c < rr/2, and p(c) = I(<) = 
p0(2/r)(kp< - 2/7r + 1) for 7rj2 5 kp< 5 k + pl , where I is 
the bunch length and c = z - ct. This bunch shape is used 
in simulations throughout thk paper. The beam has a uniform 
distribution in the transverse direction out to radius 1 c/wr. 
The driving beam parameters are the following: 7 = ZO,k& = 
14.14 and the peak density is 0.2 times the background plasma 
density no. Note that the pinching is strongest towards the tail 
of the bunch where the beam current is highest. 

Figure 3 Real space plots R vs. 2 ,at w,t=32,44,62 and 150 
repectively. 

For the parameters of Fig. 3, Eq. 4 gives WI 1: O.O34mcw, 
at r = c/wp at the tail of the beam. In Fig. 3 b-d the betatron 
oscillations of the beam are apparent. At late times, phase 
mixing of the various oscillations causes an effective transverse 
energy spread of the beam. This leads to stabilization of the 
majority of the beam at a new small radius, where the Bennett 
pinch equilibrium[l3] has been approach. The tail of the beam, 
however, has spread. 

III. Suppression of Weibel Instability 

We have seen in section II that a wide beam can minimize 
the tendency of self-focusing. However, such beams may still 
be subject to the well known Weibel inst’ability[I4]. Physi- 
cally this instability arises because like currents attract and 
this results in local pinched structures. The Weibel instability 
is a purely transverse and purely growing mode (i.e., kli = 0, 
Rew = 0). The maximum growth rate is 

( ) 

? 
Imw = -T% wp 

no-t 
(5) 

The wavelength of the maximum growth mode is on the or- 
der of the plasma skin depth c/up. In this section we study 
the stabilization of this instability by introducing a transverse 
thermal spread on the beam and by applying an axial magnetic 
field. The transverse thermal energy required to stablize lila- 
mentation reflects the Landau damping condition that a parti- 
cle move through an instability wave length during an e-folding 
time of the instability. Then the instability can be suppressed 
by phase mixing. Thus if the thermal velocity satisfies 

811 $ ( 1 
f (P, = VL/C) 

P 

then the instability can be stabilized. This gives a threshold 
transverse beam energy of 

T, zz ;& = ;$& (7) 
P 

This transverse energy is independent of the beam energy 7. 
The thermal energy one needs to stabilize Weibel instability 
depends only on the ratio of beam density to plasma density. 
Another method to prevent the beam from breaking up into 
small clusters is to apply an axial magnetic field to the system, 
if the beam electron cyclotron frequency is greater than the 
beam plasma frequency, then the system is always stable. 
Cary et al.[15] indicates that the Weibel instability can be com- 
pletely suppressed when the inequality 

is satisfied for the cold plasma case. It is clear that suppress- 
ing filamentation with an ax,ial B field is difficult. In a cold 
plasma the B field nekded to stabilize filamentation is propor- 
tional to fi. Stablization by Landau damping appears to 
be easier. As stated before, the thermal energy required for 
the driving beam is independent of the beam’s energy. For 
instance, if the plasma density is 1017cm-3, beam radius is 
170pm(k,a = 12) with beam density 10’Gcm-s, the transverse 
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thermal energy required for stabilization is ksTL 2 50KeV. 
For 7 = 1000, this number corresponds to normalized emit- 
tance of TV z IO-“mm - mrad. This appears to be quite easy 
to achieve. 

Lee et al.[16] indicated that the existence of a cutoff wave 
number k, implies that filamentation instability is absent in a 
beam with radius a 5 r/k,. Our simulations agree with this 
theoretical prediction. 

To study the filamentation instability, we consider a mo- 
noenergetic beam k,a = 20, k,l = 14.14, 7 = 10 and nb/np = 
0.2; the transformer ratio for this case is 4s. A test traling 
bunch was added with parameters n,/n, = 0.01, 7( = 10, 
k,a = 10, k,f = 1. Figure 4. shows the time development 
in real space. Small perturbations enhance the Lorentz force 
,which attracts nearby beam electrons and repels plasma elec- 
trons, As time goes on the filaments tend to coalsece into larger 
filaments (See. Fig. 4). Fig. 5 is the phase space plots (pI vs.r) 
corresponding to Fig. 4. Simulations show that the growth of 
filamentation is proportional to l/fi, consistent with the lin- 
ear 

1s. 

theory eq. 5. 
R VS.2 

s 

1.8 Wpl z43.75 4S.E 

or vs. R 

~~5~~ 

w,l : 43.75 18.5 

‘:,~~~, gqf-j 
~Z~~~q&l, I 
~~~zz~z+.. : 

1~:~~~ =;m$j 

WDI z143.75 * 0.1 wpl z143.75 18.5 
gigure 4 Figure 6 

To stabilize the beam a transverse thermal energy i?mc”3: 
25Kev is given to ahe driving beam and an axial B field having 
n :- wi, into the system. As a comparson, the other param- 
Pters are the same as the first trial. Putting these numbers 
into cq. 8, the LHS is still slightly less than the RHS. Sim- 
ulation results show that hlarnentation is clearly suppressed. 
‘The driving beam doesn’t display any filamentary structure 
ILP to time di, ~~ 200 when some trailing particles have already 

.,: .:: ‘.&.L&: :s:j’*. ‘5 
‘t’~ : .5. :i’l.,~..,~~~;?~~~j .:x+ 2.4. +g+? ‘: 
*;g.&&-&,$p~.:, :;!~~ii~~?,~~,:~~~~~~~~~~~~~,: ., 2~,:~~s-::~~~ c;. 7::s ,‘?‘...~:*~+~&,~<“, y ;a,: “r’g&y )Ijf.p: f “~.~~~~~~~:~~~~~~~,~. /,,.y<>Q h\,:::... ;.a% z * 
: $y;:&&i &.& ,‘.,, 1: ,;- c,. :,::. y,,+? $f?y.. 

Wpl’ 43.75 

F\gure 6 Figure 7 

slipped into the decceleration region. Figure 6 shows the time 
development of the driving and accelerated beams in ronfigu- 
ration space. The phase space plots (p, vs. r) of the driving 
beam are shown in Fig. 7. Note how different Fig 6 and 7 
are from Fig 4 and 5. It’s interesting and important to note 
that the two stream instability has also been observed to be 
suppressed by the introduction of thermal spread in the beam. 
For similar parameter but a cold beam the two stream insta- 
bility is observed in 1-D simulations. Thus it appears that 
Landau damping may suppress hoth Weibel and two stream 
instabilities simulataneously. 

IV. Conclusion 

We have reported results from two-dimensional simulations 
of beam plasma instabilities in the PWFA. We find that beams 
with radius kpu 5 1 are strongly self-focused. The self-focusing 
can be avoided by using uniform broad beams . Such broad 
beams are subject to Weibel (filamentation) instability. This 
instability can be stabilized by introducing an axial B field 
and/or transverse thermal energy in the beam. The thermal 
energy required is of order f(n,/n,)mc*, and is independent of 
7. For a typical 1 Gev driving beam this corresponds to an 
emittance of lo-‘mm - mrad. With the introduction of B, 
and r, we find that both two stream and Weibel instabilities 
are suppressed. 
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