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Abstract 

We discuss the nonlinear regime of the Plasma Wakefield Ac- 

celerator and its potential advantages over linear operation, and de- 

scribe the general behavior of the plasmaelectron phase space in large 

amplitude plasma waves. We develop a Hamiltonian formalism for 

calculating the trapping of thermal electrons from the background 

plasma, and derive approximate limits on plasma wave amplitude 

due to loading by trapped electrons and other thermal effects. 

&roduction 

The one-dimensional nonlinear theory of the Plasma Wakefield 

“J’ Accelerator (PWFA), developed recently by Rosenzweig, Ruth et 

al. “I and Amatuni et al. i” predicts certain advantages the extremely 

nonlinear regime. It has been shown that the transformer ratio, the 

ratio of the maximum decelerating field inside the driving electron 

bunch to the maximum accelerating field found in the wake of the 

driver, is enhanced by driving the plasma waves with an electron 

bunch of density one-half that of the plasma electrons. This method 

of obtaining large transformer ratios is asserted to be more straight- 

forward than alternatives in the linear regime, and also to lessen 

the multiple scattering that the accelerating particles undergo in a 

PWFA, aa the plasma used need not be as dense. 

The high transformer ratios obtained in this nonlinear scheme 

depend on driving the plasma electron density waves to a extremely 

large amplitudes. In contrast to the linear waves, the maximum en- 

ergy the electrons reach during the oscillation is many times their rest 

mass energy. The electron oscillation period is an increasing function 

of this maximum energy. As the amplitude of the wave grows, the 

wave steepens dramatically, and the positive excursion in density be- 

comes very large in amplitude and narrow in time, The combination 

of these two effects suggest that nonlinear plasma waves will be very 

sensitive to any thermal effects, as the plasma electron phase space 

dynamics can be strongly affected by the velocity distribution prior 

to excitation. The relativistic velocities attained by the plasma elec- 

trons are close to the phase velocity of the wave. Therefore, we must 

consider the possibility of trapping of the thermal electrons in the 

wave potential well. Wave damping due to the effects arising from 

the initial thermal distribution also requires investigation, 

The purpose of this paper is to derive, using the nonlinear fluid 

theory formalism of Refs. 1-3 as well previous work on free non- 

linear oscillations by Noble!” the conditions for trapping of thermal 

plasma electrons in the potential well of the large amplitude plasma 

wave excited by a driving beam. We then obtain an estimate on the 

saturation amplitude of the plasma wave due to trapping by consid- 

ering the energy balance between the wave and the trapped electrons. 

Also starting with the fluid approximation, we consider an alterna- 

tive estimate on the maximum wave amplitude due to the effects of 

the non-zero electron temperature on the wave motion itself. 

Nonlinear plasma oscillations 

We first recapitulate the major results of the one-dimensional 

nonlinear fluid theory. We assume that the plasma ions form an im- 

mobile neutralizing background of density no and define the plasma 
electron density n, velocity v = DC, and the plasma frequency 

W P= ( *) ‘/’ By writing the fully relativistic fluid equations 

CH73X7-V~X7~OOO~I-o1?J $l.O() c Il:ttt: 

for the plasma electrons in the presence of an ultra-relativistic beam 
of density ng and velocity Ub = /?bC and assuming the wave motion 

is a function only of the variable 7 = up(t - z/oh) we obtain the 

result of Akhiezer and Polovin 161 : 

nOPb 
n=jg-I-p (1) 

In the case we consider /?b --t 1 and the equation simplifies, with the 

substitution of a new independent variable z = (&$)‘/‘, to 

zy+; 
[ 
-&1+2”b 1 

no 1 (3) 

where the prime indicates differentiation with respect to r. When 

nb is a constant, zero or nonzero, the first integral of Eq. (3) is 

obtained trivially. Since we are interested primarily in the dynamics 

of the free oscillations behind the driving beam, we concentrate on 

the integral of the homogeneous equation, which is of the form 

(Z’(T))’ = 27,,, - (z + i), (4) 

where 7m is the maximum Lorentz factor the fluid electrons attain 

due to the wave motion. The electron Lorentz factor is thus given as 

a function of z by 7 = (x + z-‘)/2. 

The solution of Eq. (4) 

integralslJ’ 

has been found in terms of elliptical 

so we may in principle calculate z exactly as a function 

of r. The solutions are discussed in great detail in Refs. 2and 5, and 

the reader is urged to consult these sources for a full description. It 

is not necessary to repeat these previous results for our purposes, as 

the electric field can be deduced directly from the fluid equations!” 

in terms of Eq. (4) 

E(z) = -(m,cwp/e)z’ = i(m,cwp/e) [2rm - (2 + $1 l’*. (5) 

Thus we may identify z as being proportional to the electrostatic 

potential and form the potential energy function 

V = -cd(z) = mc*(l - z). (6) 

The maximum of the potential energy occurs at the minimum in z. 

Trapping of thermal electrons 

In order to study the trapping of the thermal background elec- 

trons in this potential well, we employ the Hamiltonian formalism 

used by Ruth and Chao”’ m their discussion of the Plasma Beatwave 

Accelerator (PBWA). The Hamiltonian may be written formally as 

H = -e4(z - ubt) + c [m*c* -I- p*] l’*. (7) 

We convert the Hamiltonian to a constant of the motion using the 

generating function 

Fz (2, P*, t) = (z - vbt)l)* 

to give a new coordinate, momentum and Hamiltonian: 
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and 

Z* zz ,?I - vbt zr -f)br, 

WP 
P* = P (9) 

H’ = H-vbp* = mc2(1-z(z*))+c[m2c2+p2]1’2 -q,p*. (10) 

The Hamiltonian is now a useful invariant. 

In order to see if an electron may be picked out of the tail of 
the thermal distribution of the background plasma and trapped in 
the potential well (bucket in accelerator physics parlance) of the 
wave, we evaluate H* before the arrival of the driving beam. 
An electron of initial forward velocity ‘v = pot has an invariant 

H; = mc270(l - P&o), 01) 

where 70 = (1 --pi)- ‘i2. The value of H’ at the separatrix be- 
tween trapped and untrapped electrons is found by evaluating 

the Hamiltonian at the unstable fixed point at the back of the 
bucket, where E(s) = 0, z = z,;,, and 7 = 76. Substitution of 
these values yields 

H’ -P 
= m2 [I - Z,in + 7;‘] (12) 

Assuming that the plasma is cold (PO < l), the oscillation 
amplitude is large (z,in << 1) and the driving beam is ultra- 
relativistic (7b > (z,;n )-‘), the condition for trapping, Hi 5 
H&,, can be written, 

PO 2 %nin = (27m)-l. 

Wave loading due to background trapping 

We assume that the background plasma electrons initially 
have a Gaussian velocity distribution characterized by a rms 
thermal velocity ~th = &c = (kTe/m)‘i2. The fraction of 
the plasma electrons trapped ct, is, assuming the minimum 
trapping velocity ,& > &h, 

Efr = erfc( gjth -) N (~~lh7m)e-2(2/8c*7n)‘. (14) 

To estimate the the saturation amplitude of the wave we 
examine the rate of energy input to the wave by the driving 
beam versus the rate of energy extraction by the trapped elec- 
trons. The rate of energy per unit area u. per unit length input 
to the wave can be shown to be”’ 

2 1in= (7m - l)nomc2. 

The question remains as to how much energy the trapped 
electrons take out of the wave. If they all stay inside the bucket 
then the wave is destroyed in a short distance. This cannot 

happen, of course, because of the self-consistent bucket load- 
ing that has not been accounted for yet. This is a difficult 
calculation, but it is qualitatively clear that the trapped elec- 
tron density builds up at the back of the bucket, as the rate of 
longitudinal phase advance Y = 1% 1 is very small as the unsta- 
ble fixed point is approached. The trapped electrons provide 
a self-decelerating wake, and the vast majority of them are de- 
trapped after gaining an energy less than or equal to the beam 
energy. Some of the initially more energetic trapped electrons 
will undoubtedly remain inside the bucket, however, and ac- 

celerated to very high energy. 

Thus the energy extraction rate due to trapping is 

2 lout= Etrn07bmca (16) 

and the net energy input to the wave per unit area per unit 
length is 

w = 2 lin -2 lout= (ym - 7bEtr - l)nOmc’. (17) 

We obtain the saturation amplitude of the wave due to trap- 
ping by taking c?W/d7, = 0. The resulting transcendental 
equation can be solved for the amplitude parameter 7m ap- 
proximately in the limit that 7b >> Lath; 

7m - F(7b/Te) [g] “’ 

where F(7b/Te) is a very slowly varying function that is the 
neighborhood of 0.25. For a PWFA operating in the nonlinear 
regime the maximum normalized (to the linear “wave-breaking 
limit”) accelerating field is then 

2 CT (27m)1/2 N [&]‘I’. 
P 

As a numerical example we take kT, = 10 eV and calculate 

a maximum electric field of approximately ten times wave- 
breaking. 

Thermal limits on wave amplitude 

The previous analysis is based on the assumption that the 
equations we have written in the fluid approximation describe 
the salient features of the wave motion and, in doing so, have 
neglected the possible collective effects of the thermal electron 
distribution. Here we develop a test for the validity of our 
assumption, and discuss the physical mechanisms of wave sat- 
uration by thermal damping. 

One might anticipate from the previous analysis that very 
small differences in the initial velocity of the plasma electrons 
yield large differences in their energy at the back of the bucket. 
This is in fact the case, as can be shown easily from Eq. (10); 

0th A7 IZmin= $x = - 
enin 

= ‘@th7;. 

This energy spread indicates an uncertainty in the rate of phase 
advance v of the plasma electrons which is very detrimental 
in a wave with such steepened density profiles. Again using 
Eq. (10) we have 

dH* -2X2 

“=ap*= 22. 

Using Eq. (21) we find the spread in Y 

(21) 

(22) 

The largest uncertainty in phase advance occurs in the neigh- 
borhood of the minimumin 2, i.e. the back of the bucket. The 
total spread in phase (time) accumulated over the oscillation 
period T must be narrower than the width a of the steep ex- 
cursion in density near positive turning point (at the back of 

the bucket), or the accelerating field will be damped. The frac- 
tional half width a/T of this spike can be estimated easily by 
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noting the approximate functional form of the steepened waves 
(cf. Ref. 2), 

a 1 -A,-...--. 
T - 4-& (23) 

The fractional spread in r at the maximum in the accelerating 
field is approximately 

AT AZ 
-z-z 

r dwpT 

Using Noble’s”’ result for the period in the nonlinear limit, 

w,T = 46, 

we find 
AT Pth -E-----. 

r 4% 
(26) 

Comparing Eqns. (23) and (26)we obtain the maximum ampli- 
tude 

(27) 

in close agreement with Eq. (18). 

Thus the inherent momentum spread detunes the motion of 
the plasma electrons and is a cause of phase spread in the wave. 
The initially forward going plasma electrons are advanced in 
phase and can damp the accelerating field, reducing its max- 
imum amplitude by rounding the top of the sawtooth shaped 
electric field profile. The saturation mechanism discussed here 
is the incoherence of the electron oscillations, and is therefore 
a form of Landau damping. 

Discussion 

The two estimates presented here are derived from appeals 
to distinct physical effects, trapping and thermal damping. 
The fortuitous agreement of the alternative methods for esti- 
mating of the maximum plasma wave amplitude can be inter- 
preted as a check on the internal consistency of our approach. 
Obviously, something goes awry with the waves as we have 
modeled them as the amplitude nears rrn CI l/&h, and it is 
our view that this is the correct functional dependence of the 
maximum amplitude on the temperature. The thermal damp- 
ing may be the more serious constraint, as the incoherency can 
build up over more than one oscillation behind the bunch. We 
should view these calculations as upper estimates on the actual 
physical wave amplitude. Our analysis is essentially a pertur- 
bation treatment which assumes the one-dimensional fluid solu- 
tions are valid. There may be some subtlety that is overlooked 
by this method. A more self-consistent analysis aided by some 
computer simulation work would help answer these questions. 
Also, we have entirely ignored the three-dimensional effects 
in our discussion, albeit because the nonlinear formalism has 
not as yet been developed to allow transverse variations is the 
plasma waves. These effects certainly will have an impact on 
the maximum wave amplitude in a real PWFA. 
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