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Summary 

This paper reports on studies of electron trajec- 
tories in a combined wiggler and alternating gradient 
quadrupole field. The quadrupole field is assumed to 
vary continuously along the symmetry axis. The linear- 
ized eouations of electron motion are solved analyti- 
cally for a plane-polarized wiggler by using the two- 
scale oerturbation method. A comparison with the 
numerical solution is presented, and the conditions 
for unstable trajectories are discussed. 

Introduction (2) 

Recently, there has been a growing interest in 
the study of using free-electron lasers (FELs) to 
generate coherent and tunable XUV radiation at high 
intensity.' It has been pointed out2 that to achieve 
an equal gain in the UV or XUV regime, an FEL needs 
much higher density in the electron beam and longer 
wiggler length than an FEL operated in the infrared 
or visible-light region. Thought is then directed 
toward using an external Focusing channel along with 
the wiggler in the XUV FEL design. 

In this paper, we shall study electron trajec- 
tories in combined wiggler and quadrupole fields. Our 
study will be limited to the plane-polarized wigglers 
for FELs to be operated in the UV or XUV ranges only. 
The quadrupole channel considered here is one in which 
the field quadrupole gradient varies alternately and 
continuously along the symmetry axis. The wiggler's 
field is assumed to be concentric with that of the 
quadrupole channel. To make the analysis tractable, 
the self-field of the electron beam is isnored, the 
nonlinear components of the wiggler field are neglect- 
ed, and the axial speed of electrons is assumed to be 
constant. 

Because of the lengthy and tedious calculations, 
the details of solving the trajectory equations will 
not be included here. Interested readers can find 
details in internal reports by authors.3B4 

Equations of Motion 

We choose a Cartesian coordinate system so that 
the electrons are traveling in the z-direction and the 
wiggler field is in the y-direction. 'The z-axis is 
assumed to coincide with the symmetry axis of the con- 
centric wiggler and quadrupole fields. The origin of 
the coordinate system is chosen at the entrance of the 
wiggler/quadrupole channel. We also assume that the 
wiggler/quadrupole channel extends over all z > 0. 
The variation of the wiggler field along the - 
z-direction can be written as B, cos (Znz/xw), where 
6, is the amplitude of the wiggler magnetic field, ~w 
is the wavelength of the wiggler, and we have ne- 
glected the fringe field at the entrance. The quadru- 
pole field considered here can be represented as 
-3'sin (27tZ/XQ) and B'sin (2nz/Xq), in the x- and 
y-directions, respectively, where 6' is the field 
gradient and Xq is the quadrupole period. 

Neglecting the self-field of the beam and assum- 
ing the laser field is absent, the equations of motion 
for an electron are 

-- 
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m $ (yg) = qBw sinh (kwy) sin (kwz) g 

(1) 

- qvzB'x sin (kQz) + qvzBw cash (kg) cos (kwz) , 

and 

m $ (vg) = -qEw sinh (kJ) sin (kwz) s 

+ qvzB'y sin (kQz) , 

where m is the mass of an electron, r is the ratio 
of an electron's total energy to the quantity mc2 
(c = the speed of light), t is the time, q is the 
unit charge, kw = 2n/xw, kQ = 2r/~Q and vz is the 
axial speed of the electron. Neglecting dy/dt in 
Eq. (1) and using the approximations of 
sinh (kwy)- kwy, cash (kwy) = 1, vzx c, and 
ct zz v,t = z, one obtains from Eqs. (1) and (2) that 

d2x = kw[aw cos (kwz) - kwxb sin (Kkwz)] , 
dz2 

ana (3) 

2 
3 = k$-aw sin (kwz)(g) + b sin (Kkwz)]y , (4) 

where K = kQ/kw , a, = qB,/ntickw , and 

b = qB'/myck$ . 

Solutions for K << 1, aw << K 3/2 , and b << K2 

In this range, good approximations of the solu- 
tions to Eqs. (3) and (4) can be found by using the 
two-scale perturbation method.* Retaining the first 
few lower order terms in the perturbation series, we 
have . 

x(z) = Ce 
U,(z) 

sin C4 + Vx(z)l 
(51 

u (2) 
+ ( aw )eX kw sin JI sin I* - Vx(z)l + W(z) , 

and y(z) = De 
U,(z) 

sin [e + Vy(z)] , (6) 

where C, 0, D, and e are constants dependent on 
the initial conditions 

sin (kQz) + (-$) cos (2kQz) 
I 

+ . . . ) (7) 
8K 

V,(z) = k ($, kQz + /T($)' cos (kQz) + . . . , (8) 
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-9 

a2 2a2 
up) = - g COS (2kwz) - p (1 + -$ + 7b 

K KL 
sin (kCz) 

+ b3 sin (3k z) + b2 cos -- 
Q -7 

(2k z) 
Q 

+ . . . , (9) 

36K6 SK 

Vy(d = /k f +(zKf+ b]($+$j-/kwz 

2 
- 2 sin (2kQz) - a cos (kQz) 

K3 

awb 
W(z) = q 

sin (kw - k )z 

I 

Q 
sin (kw + kQ)z 

-__ 
(1 - K)' (1 + K) 

2 
I I- -l 

a -( 1 k; cos (kwz) + . . . , 

and . 

In Eq. (5), the general solution of x-motion is 
contained in the first term and the particular solu- 
tion is 'written into the second and third terms. The 
first and second terms describe the betatron oscilla- 
tions induced by the quadrupole and the wiggler, re- 
spectively. The third term describes the fast oscil- 
lation excited by the wiggler. Note that the particu- 
lar solution is independent of C and +; therefore, the 
oscillations induced by the wiggler should be coherent 
motions for all electrons in the beam as we expected. 
Also, because the second term in Eq. (5) has the same 
form as the general solution, the quantity W(z) must 
satisfy Eq. (3). 

Tne quantities U,(z) and V,(z) in the x-solution 
are related to each other by 

. . . ] 9 and (13) 

3 t ($)2 = (ai - bki sin (kqz) . 

For the y-solution, one can derive similar relations 
between U (z) and V,(z). These relations will be 
helpful x w en we stucy the beam envelopes and matching. 

Stable Solutions for K << 1, aw 2, K, and b << K2 
-- -__- 

If we lower the electron energy and/or increase 
the quadrupole period, we then may reach the range of 
K << 1, a, s K, and b << K2 where the unstable solu- 
tion is likely to occur. Like Mdthieu's equation, 
there are boundaries between the stable and unstable 
zones. In fact, for K <c 1, the stability boundaries 
of the Mathieu's equation, 

$+kt[$-bsin(Kkwz]y=C , 

can be very good approximations to those of Eq. (4) 
More accurate boundaries can be calculated by using 

1 5) 

a 

perturbation method. It can be shown that the first 
two stable zones for Eq. (4) are3 

b2 4 
-&?$+ . . . < 

and ( 

a2 
------+...<-L<1- b2 K2 

K2 2-a'**- 

Stable solutions for parameter values far from 
the stability boundaries also have been derived fro 

6) 

m 
the two-scale perturbation method. The x-solution in 
this region is identical to that in the last section, 
and the y-solution has the same form as in Eq. (6) 
except that the expressions of U,(z) and Vy(z) are 
different from Eqs. (9) and (10). The approximations 
to U,(z) and V,(z) are 

Uy(z) = 
b sin (kQB) a2 

(2ai - K*) 
- $ cos (2kwz) 

b2(4ai + K') cos (2kUz) 

4(2az - K*)' (a: - 2K2) 
+ 

.'. ' 
(17) 

and 

Vy(z) 
- K2) 

kWZ 

a2 
+ $ sin (2kwz) + 

2b cos (kQz) 

K(2a2 - K2) 
W 

+ 
b2(2az + 5K2) sin (2kQz) 

4K(Zai _ K2)' (a2 _ 2K2j 
1 t 

-.a ' 
W 

I 

(18) 

;;;;tions similar to Eqs. (13) and (14) can be derived 

Numerical Examples and Comparison with 
Numerical Solutioni 

We now present some of our numerical results and 
compare the analytical solutions with the numerical 
solutions of Eqs. (3) and (4) by the Runge-Kutta 
method. For the examples given below, because of the 
excellent agreement there is almost no discernible 
difference between the plots for these two kinds of 
computational results. We therefore shall use one 
figure to show both the numerical and the analytical 
solutions. 

In the range of K <i 1, a,<< K3/2, and b << K2, 
the parameter values used for computations are xw = 
1.6 cm, 
y = 400. 

IQ = 80 cm, 5, = 0.75 T, 6' = 5 T/m, and 
From these, we have a, x 2.8 x 10-3, 

b = 4.75 x 10-5, and K = 0.02. Figures 1 and 2, re- 
spectively, show the x- and y-trajectories calculated 
for 0 < z < 300/kw. The initial values are chosen as 
x(0) = y(O)-= 2 x 10T3/kw and dx/dzlo = dy/azlo = 0. 
The analytical result here is computed from Eqs. (5)- 
(12). For the relatively short axial distance shown 
in the figures, the betatron oscillation cannot be 
fully displayed, but the fast oscillations induced by 
the wiggler can be seen clearly. 
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Fig. 1. Analytical and numerical results of 
x-traiectory for 0 < z c 300/k 
b = 4.75 x 10-5, K = 0.82, X('$'="; 

= 2.8 x 10-3, 
x 10v3/kw, and 

dx/dzl, = 0. 
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Fig. 2. Analytical and numerical results of 
y-trajectory for the same parameter and initial 
values used in Fig. 1. 

In the region of b << K2, a, z K, and K << 1, the 
x- and y-trajectories are shown in Figs. 3 and 4, re- 
spectively, where the analytical result of y-trajectory 
is calculated from Eqs. (6), (17), and (18). The 
parameter values and the i itial conditions used are 

= 0 018 b = 4 75 x lo-!, K = 0.02, x(0) = y(0) 
~WO.OO;,kw: dx/dzi, = dy/dzlo = 0, and 
0 < z < 2500/k,. In Fig. 3, the curve showing 
wiggling on the electron is densely packed in the 
darkened region; only the betatron oscillation and the 
envelope of wiggling can be recognized. 
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Fig. 4. Analytical and numerical results of 
y-trajectory for the same parameter and initial 
values used in Fig. 3. 

Conclusion 

We have studied the electron trajectories in 
a combined wiggler and alternating gradient quad- 
rupole field. Analytical solutions for the 
linearized equation of motion have been derived 
and compared with numerical solutions. The ex- 
cellent agreement from the comparison suggests 
that the analytical results can be useful for 
further investigation of physical properties of 
an FEL with external alternating gradient quad- 
rupole focusing such as beam envelopes, beam 
matching, and signal gain. 
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Fig. 3. Analytical and numerical results Of 
x-trajectory for 0 < z < 2500/k,, a, = 0.018, 
b = 4.75 x 10-5, K = O.i%?, x(0) = 0.002/k,, and 
dx/dzl, = 0. 


