
IEEE Transactions cm Nuclear Science. Vol. ~~-32. NO. 5, October 1985 

SCALING LAWS FOR RFQ DESIGN PROCEDURES* 
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Summary 

Scaling laws are relations between accelerator 
parameters (electric field, rf wavelength etc.) and 
beam parameters (current, energy, emittance, etc.) 
that define surfaces of constant accelerator perfor- 
mance in parameter space. These scaling laws can act 
as guides for designing radio-frequency quadrupoles 
(RFQs). We derive several scaling relations to show 
the various tradeoffs involved in choosing RFQ designs 
and to provide curves to help choose starting points 
in parameter space for optimizing an RFQ for a partic- 
ular requirement. We show that there is a unique 
scaling curve, at a synchronous particle phase of -90°, 
that relates the beam current, emittance. particle 
mass, and space-charge tune depression with the RFQ 
frequency and maximum vane-tip electric field, pro- 
vided that we assume equipartitioning and equal longi- 
tudinal and transverse tune depressions. This scaling 
curve indicates the maximum performance limit one can 
expect at any point in any given RFQ. We show several 
examples for designing RF@ using this procedure. 

Introduction 

We define a procedure for obtaining initial RFQ 
designs.' Scaling laws, derived below, are used to 
obtain an initial estimate of the RFQ parameter regime 
to satisfy the beam-dynamics requirements. RFQ opti- 
mization can then be done using program RFQDES,* which 
is a general-purpose RFCJ design program that allows 
maximum flexibility in choosing RFQ design algorithms. 

We start by writing the linear space-charge force 
parameters for a uniform charge-density ellipsoid, then 
list the RFQ Mathieu equation parameters (the Mathieu 
equation approximately describes particle motion in 
the RFQ), and finally combine the RFQ and space-charge 
Mathieu terms to form scaling laws. Scaling-law 
plots, made to facilitate RFQ designs, are given, and 
we show several examoles of RF0 desisns usinq these 
laws. We 
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list below'some of the parameters.- 
transverse normalized RFQ acceptance/A 
RFQ minimum vane radius 
synchronous velocity/c 
transverse (longitudinal) space-charge- 
force parameter 
maximum electric field on the RFQ vane tip 
at quadrupole synanetry 

V G/a 
total transverse (longitudinal) normalized 
emittance/b 

+T/‘LdL [Eq. (1411 

AT/CT = a2/Ri 
beam current in amperes 
modified Bessel function 
transverse (longitudinal) phase advance 
per period (zero current) 

OTo(Lo) m = 'T:(Lo) - 'T(L) 
space-charge depressed, transverse 
(longitudinal), phase advance per period 
free-space rf wavelength of the RFQ 
beam particle's rest-mass energy in 
electron volts 

*Work supported by US Dept. of Defense and Ballistic 
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RFQ modulation parameter = (maximum/ 
minimum) vane radius 
transverse (longitudinal) space-charge tune 
depression parameter 
synchronous phase (normally negative) 
flutter factor = (maximum/minimum) beam 
radius 
maximum beam radius and dR/ds (s is the 
distance along the trajectory/Bx) 
RFQ vane voltage 
maximum beam length/2 and dZ/ds (s is 
the distance along the trajectory/Bx) 
impedance of free space = 376.73 R 

Below, all lengths are divided by the rf wavelength x 
and all electric potentials and fields and the current 
are divided by the particle's rest-mass energy in 
electron volts. Consequently, all parameters that 
appear in the following equations are unitless and the 
equations do not explicitly contain h and MO. We will 
return to SI units after we derive the scaling laws. 

Space-Charge Forces 

Linear space-charge defocusing terms are calcu- 
lated from the electric field components for a uni- 
formly charged ellipse.' The space-charge (Coulomb 
repulsion) defocusing terms (constant term in the 
Mathieu equation) for nonrelativistic beams are 

AL = JIqf/(RiZM) (longitudinal) , and (1) 

AT = JI+(l - f)/(RiZM) (transverse) , (2) 

where J = 3ZoI/(4n), and f is a form factor that 
depends on Z,/i&/RM; that is. f = f(ZM G/RM). 

RFQ Parameters 

The RFQ4v5 is a device that provides transverse 
focusing, longitudinal sinusoidal bunching, and ac- 
celeration of beam particles. The RFQ's electrical 
properties are determined by using an electrostatic 
potential function, which then gives the shape of the 
vanes and is used to calculate the electric fields for 
beam-dynamics modeling. 

We define the following parameters:' k = 2%. 

A = (m2 - 1)/[m210(ka/B) + Io(mka/B)], x = [l - AI0 

(ka/B)], 8 = Vx/(a'y), and Arf = n2VA sin ('ps)/ZyR~). 

Transverse particle motion in the RFQ is described by 

d2u/ds2 + [Arf + B sin (ks)] u = 0; u = (x or Y) , (3) 

which is in the form of the Mathieu Equation. The 
transverse tune for particle motion averaged over one 
focusing period is obtained from Eq. (3), giving a 

wave number 0To = J[brf + B2/(8n2)]. The longitudinal 
motion is found by studying a particle's energy gain 
and phase change with respect to a "synchronous" par- 
ticle through one focusing period. The longitudinal 
motion for small oscillations can be approximated by 
a harmonic oscillator having a longitudinal phase 

tune of aLo = m. 
The maximum electric field on the vane at quadru- 

pole symmetry is E, = V G/a. (Note that when de- 
signing an RFQ, the maximum electric field in a real 
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device may not occur on the vane tip and for smooth 
vanes is typically 1.4 larger than given here.)6 

We obtain from the equations in this section the 
two equations (4) and (5) and the flutter factor 9 
(Eq. 6) used for the scaling laws 
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= E:x/(4a2y2a2) , (4) 

2 
OLO" -n2Eoa A sin (~,)/(y3R~~) , (5) 

/2 JI = (2n + aaT + y ULo 2 2 )/(Zn - 2UTo q) . (6) 

(Note that $ only depends on oTo and aLo for nonrela- 
tivistic beams.) 

Combined RFQ and Space-Charqe-Force Scalinq Laws 

We obtain relationships between the beam param- 
eters I, CT, EL and the external-force-determined 
parameters oTo and aLo, which are related to the beam 
parameters through VT, pL. We then rearrange the RFQ 
equations so that the parameters in these equations 
reflect their dependence on the beam-dynamics quanti- 
ties. Finally, we present these equations in a form 
that facilitates making RFQ designs for given, de- 
sired beam parameters. 

We define "emittance" as the area/n enclosed by 
an ellipse having its semimajor axis (RW. R'M) 

or (ZM, Z'W) (obtaining CT = RFIR'M = oTR~, and 

EL 
= ZMZIN = 0LZi) and use the equipartitioning theo- 

rem718 (which relates the free thermal energy in the 
longitudinal to the transverse direction) to combine 
these equations into 6Tu-f = cL~L. We introduce a 
quantity g defined by g = J(c~~T)/(E~u~), which in- 
dicates the deviation from equipartitioning. We can 
now show that RW = /~T/QT, and ZM = J(cTaT)/(gcrL). 
The form factor introduced above can now be written as 

f(ZM WRM) = f[aT fW(sq)I . (7) 

Combining Eqs. (1) and (2) and the equations in this 
section, we obtain two important relations 

Jg( hL) "2(l-~T)1'4/(t~'2PL) = aLo/ , and (8) 

2 2 
2f/(l-f) = uLbLo/hT~To) . (9) 

We now study the RFQ Eqs. (4) and (5). We want to 
determine performance limits from the scaling laws. We 
therefore let 'ps = -n/2. The RFQ vane radius is re- 
lated to the acceptance (AT) by a = m. Let h be 
the ratio of acceptance/emittance (h = AT/cT); then, 

a=&R - M = JhCT/aT In working with the beam-dynamics 

quantities, we constrained the longitudinal beam size 
using the equipartition theorem; therefore (for con- 
sistency), we do the same thing here. The bunch 
length typically is taken to be twice the synchronous 
phase (normalized to OX) ZM = -Osvs/(2n) = O,/4; 
therefore 0, = 4 G/(gcrL). 

This quantity defines a minimum B(Rmin) 
because for 0 > Omin, we do not have to fill the 
entire 'ongitudinal bucket. We can now rewrite the 
(ka/O) in the equations for A and X as n&gaL/(2aT). 
Combining equations we have 

A = (m2-l)/[m210(ng~oL/2aT) + Io(mng&~L/2~T)] ; (10) 

x = [l-A Io(ng&L/26T)] ; ("I 

[Eo( l-uT) 1'4/q]2 = (2~:o+y2a:o)[4*2y2h/(x~To)] ; (12) 

g2('-uL)Eo/[(1-pT)3'4~] = lby3dx s;;~/(:&A) . (13) 

Equations (7)-(g) and (lo)-(13) contain all the in- 
formation needed to obtain our scaling laws. We will 
study two cases. The first case assumes equiparti- 
tioning (g = 1) and equal transverse and longitudinal 
tune depressions (nL = nT = 11). 

In the second scaling case, we let the ratio 
ML/UT be any fixed quantity, but we require that 

g = 9(1 - llT)/(l - II,) = JCTOT/CLdL . ('4 

(Case 1 is a special case of two. We write the 
equations for both cases.) With this restriction, 
Eqs. (7)-(g) and Eqs. (lo)-(13) become the equations 
listed below. [Equation (15) defines L', as 

J(l-~~)~'~/(c;'~ 'A,).] 

BEAM-DYNAMICS EQUATIONS: 

f = f (aTo6'/flLo) . ('5) 

L, = J(1 - ~~)~'~/(c;'~p~) = dL0/(f5) , (16) 

Zf/(l - f) = nL":o/(!JTO;o) . (17) 

RFQ EQUATIONS: 

A = 2 (m -l)/[m 2 - 
Io(dhaLo/2aTo) + Io(m~~aLo12aTo)l . (18) 

x = [1 - A Io(~Ji;0L0/20TO)] , ('9) 

[Eo(l-nT)1'4/JT;]2 = (20;~ + y2~:o)[4n2y2h/(xaTo)] ,(20) 

IEo('-uT)1'4 /J+ 3 = 16y v'if aTo 3'2/(w2Ji;A) . (21) 

Equations (b), (15). and (17) uniquely determine oLo 
versus 0To for a fixed pL/pT ratio. (We have assumed 
that Y = 1. a good approximation for the ion beams of 

interest.) We can treat [E,(l - ~T)"~/Jril in 
Eqs. (20) and (21) as a single entity: 
L2 = (E,(l - PT)'/~/J~;). The right-hand sides of 

Eqs. (20) and (21) depend only on QTo, oLo, and m. We 
can solve these equations in a self-consistent manner 
to eliminate the modulation (m) dependence. Because 
there is a unique relationship between 0To and oLo, 
the quantity L2 is a unique function of 0To. Similar 
considerations show that the right-hand side of 
Eq. (lb) depends only on oTo. We therefore have a par- 
ametric relationship between the quantity L2 and the 
left-hand quantity of Eq. (lb) (Ll). In Fig. 1, we plot 
(3ZoL2)/(4nLl) = L3 versus (4llL,/(3ZO) = L4 for 

. We revert to SI units in making this plot so 
iha; ';te scaling will be more obvious. The units used 

are E:I (volts/meter), ,TI(meter-radians), Is1 (am- 
Peres), MO (electron volts). (The dimensionless pa- 
rameters E,, CT, AT, and I in L3 and L4 are the fol- 
lowing functions of the dimensioned parameters: 

Eo = EoSIX/Mo c 'I/x A = AsI/?. and I = Isl/Mo.) ?T='T VT T t 

It is remarkable that the two constraints of equipar- 
titioning and nL = PT have led to a scaling relation 
defined as a single curve. Given a set of require- 
ments on particle type, beam current, emittance, and 
maximum acceptable space charge p, only the peak sur- 
face vane-tip electric field at quadrupole symmetry 
and rf wavelength remain to be adjusted (within the 
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Fig. 1. scaling law curves (uL = UT). 

constraints of the scaling curve) to determine the 
maximum performance capability of a given RFQ design. 
One other scaling relation is indicated in Fig. 1 
when the acceptance AT is not equal to the emittance 
"T. We plot L3 versus L4 for AT/cl- = 4, where L3 is 

divided by /AT/CT. The minor difference in the curves 
indicates that we can design for AT = LT, then mul- 

tiply the resulting electric field by JAT/cT. 
Almost the same considerations apply to Case 2 

as to Case 1 above, except that Eq. (17) now has a 
)IL/pT ratio dependence. We will therefore get a dif- 
ferent but unique scaling curve for each different 
ratio of vL/pT. Two cases are shown in Fig. 2. For 
reference purposes in Figs. 1 and 2. we show curves 
of OLo and 0To versus L4. 

Fig. 2. Scaling law curves (uL # +,T). 

RFQ Design Examples and Discussion 

Several observations concerning Fig. 1 also apply 
to Fig. 2 when the ratio pL/pT is fixed and g is con- 
strained as in Eq. (14). First, any RFQ design that 
satisfies equipartitioning and nL = UT will lie on 
the curve C3 versus L4. Second, suppose we wish to 
maximize beam current for a given zero current tune 

without regard to emittance. We can eliminate cf' 

between L4 and Lg and solve for Is1 to obtain 

ISI 3 SI3 
= A (E. ) 

2 2 3 
u /(L M L ) = E 

SI 
L 403 T = A3 (L3.L4,Eo fixed). 

We can increase current for a given beam-dynamics 
characterization by increasing the rf wavelength. 
Note that with L3 fixed, the emittance will increase 
linearly with current. 

If the desired goal is to maximize the beam 
brightness for a given zero current tune, we can write 

IS'/+' = M;L;L3 ~,/[Ez'(l-~,)h~] 3 = l/A. In this 

case, the beam brightness will increase with decreas- 
ing rf wavelength. For a given beam energy, power is 
proportional to current; therefore the increase in 
beam brightness will be accompanied by a proportional 
decrease in beam power. (Current and emittance are 
proportional to X3.) 

As a simple example of using Fig. 1, suppose we 
wish to design a RFQ as an injector to an existing 
drift-tube linear accelerator. The existing device 
has an rf frequency of 425 MHz and accelerates a 
proton beam having 0.2-A current, 2 x 10mb n.m.rad 
transverse normalized emittance, and a maximum space 
charge P of 0.7. We find 

L4 = I"(1 - p)3'4 A3'2/[Mo(~:1)3'2,,] = 0.0258. 

From Fig. 1 we find L3 = 445. We then calculate E, 
using L3 giving 34.8 x lo6 V/m. This electric field 
is almost twice the Kilpatrik field limit and does not 
include any safety factors. If the beam-current re- 
quirement for the above case is 0.1 A, then the elec- 
tric field determined from Fig. 1 is 13.7 x lob V/m. 

Conclusion 

We have derived several scaling relations to 
show the various tradeoffs involved in choosing RFQ 
designs and have provided curves to help choose start- 
ing points in parameter space for optimizing an RFQ 
for a particular requirement. We have shown that 
there is a unique scaling curve that relates the beam 
current, emittance, and particle mass with RFQ fre- 
quency and maximum vane-tip electric field and with 
space-charge tune depression---if we assume equiparti- 
tioning and equal longitudinal and transverse tune 
depressions. Finally, we have presented several 
examples for designing RFQs using our procedure. 
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