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Summary 

We investigated the possibility of increasing the 
current-carrying capability of radio-frequency quad- 
rupole (RFQ) linear accelerators by adding permanent- 
magnet quadrupole (PMQ) focusing to the existing 
transverse focusing provided by the rf electric field. 
Increased transverse focusing would also allow short- 
ening HFQ linacs by permitting a larger accelerating 
gradient, which is normally accompanied by an undesir- 
able increased transverse rf defocusing effect. We 
found that PMQs were not helpful in increasing the 
transverse focusing strength in an RFQ. This con- 
clusion was reached after some particle tracing sim- 
ulations and some analytical calculations. In our 
parameter regime, the addition of the magnets in- 
creases the betatron frequency but does not result in 
improved focusing because the increased flutter more 
than offsets the gain from the increased betatron 
frequency. 

Introduction 

Paul Channel1 has proposed' adding PMQs in the 
vane tips of RFQ linear accelerators. He has shown 
that if the rf and magnet periods are incommensurate, 
the effective force that describes the slow part of 
tne motion is given by the sum of the effective force 
for the rf and the effective force for the magnets. 
Therefore, the betatron frequency will be raised by 
the addition of the magnets. The magnets can be of a 
convenient length not related to the short distance 
traveled by the particles in one rf period. The 
advantage of added focusing is increased current- 
carrying capability. Also, the accelerator can be 
shortened by increasing the vane modulations at low 
energies to increase the acceleration rate. Any 
additional focusing arising from the magnets can be 
used to cancel the larger rf defocusing that results 
from the increased vane-tip modulation. 

Focusing in Time-Dependent Systems 

We measure focusing strength by the size of a 
matched beam of a given emittance. For a given emit- 
tdnce, the strongest focusing system will have the 
smallest matched beam. Because space charge is a 
defocusing force, strong focusing systems allow ac- 
celerators to accelerate high currents with a matched 
beam size that fits into the machine bore. For sim- 
plicity, we will assume in this section that the 
focusing forces are linear and that space charge is 
not present. The goal is to understand focusing so 
that we can apply the results to real accelerators in 
which we try to maximize the focusing to maximize 
current-carrying capability. 

Consider a linear focusing system and neglect 
space charge. Let time be the independent variable 
and let x be the particle displacement from the equi- 
librium orbit. The single-particle equations of 
motion are 

dx=!L- 
dt 

* = -k(t) x 
my ' dt , 
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where k(t) is the time-dependent force constant. Let 
us write the solution to this equation in the fol- 
lowing form 

x(t) = A f(t) cos [$(t)+a] , (2) 

where f(t) and Q(t) are time-dependent functions 
with f(t) suitably normalized. The amplitude A and 
phase a are constants that depend on the initial con- 
ditions. 

We can write an invariant for our equations of 
motion as follows, where primes are time derivatives. 

f2p2 - 2myff'xp + [(myf')2 + (myf*')2]x2 

(3) 

= (mrAf2$')2 . 

This is a time-dependent ellipse in x-p pnase space. 
For our purposes, it is useful to choose the Courant- 
Snyder normalization for f, which we obtain by setting 

f2*'=1 . (4) 

A matched beam has a phase-space distribution function 
that is constant along the invariant curves. Consider 
a matched beam bounded by an invariant ellipse cor- 
responding to particle motions of amplitude Amax. The 
normalized emittance cn is defined as the area in x-p 
phase space divided by nmc. Therefore, the normalized 
emittance for a matched beam bounded by particle tra- 
jectories of amplitude Amax is 

yAiax 
'n 

=-. 
C 

If we substitute this into Eq. (2) and drop the cosine 
factor, we get the beam envelope for a matched beam as 
a function of time. 

CEn l/2 
Ken(t) = -y- ( 1 f(t) . 

Define fmax as the Imaximum of f over time. For a 
given emittance, the smallest beam occurs for the 
focusing force constant that corresponds to the small- 
est value Of fmay.. 

Focusing in Periodic Systems 

If k(t) is a periodic function, we know that 
there exists a number U, called the betatron fre- 
quency, such that 

JI q ut ++(t) 5 (7) 

where $ and f are periodic with the period of k. 
Averaging the normalization condition Eq. (4) over 
time, remembering that the average of the derivative 
of a periodic function is zero, gives 

v =< 1 > 
7 * 

(8) 
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Equation (8) shows that, roughly speaking, a large 
betatron frequency corresponds to a small f, but that 
the time dependence of f may be important. If k is 
time independent, f = Y -'/2-and therefore a larger 
betatron frequency always means stronger focusing. 

Doubly Periodic Forces 

If we neglect space charge, the transverse 
single-particle equation of motion for a doubly 
periodic focusing system is 

2 
Tm 2 = [k, sin W, t + k2 sin ~2 t]x , 

where kl and kp are the force constants for the RFQ 
and PMQ, respectively. Define 

kl k2 
K1 = 4 ' and K2 = ym22 * ( 

The quantity 2rK1 is the phase advance per period 
2n/wl caused by the RFQ force in the absence of the 
PMQ force. A similar interpretation holds for K2. 
The regime we consider is specified by 

0) 

K1 CC 1 , Kp CC 1 , and ~1 4 nw2 , ('1) 

where the last condition is a nonresonance condition. 
We found an approximate solution to Eq. (9) in 

the form given by Eq. (2), that is, in terms of f and 
*, as follows. 

,w 

f(t) = 1 2 2 

[$K,uJ, + K;w;)]"~ ' 

where 

(12) 

2 
Kl U(t) = -K sin w t - K sin w t + - cos 2~ t 1 1 2 2 8 1 

K2 
+ 2 cos 2w 8 2 t 

(13) 

+ K,K~w,w~ 
cos(w, + w2b 

2 + 

cos(w, - W2)t 

(Wl + 9) b, - w,) 
2 +... 

I 

q(t) = C:(+f + K$:)l 
l/2 

(14) 

2K 2K 
x [t - -J cos w,t - 2 cos w2t + . ..I . 

wl w2 

Using the above solution, we can use Eq. (6) to write 
down the matched beam envelope for a beam of emittance 
En* 

1 
22 2 2 l/4 

(Kp, + K2u2) 

(15) 

x Cl - K, sin wit - K 2 sin w2t + . ..I . 

The envelope has a maximum of 

xmax = xmo g 3 

where 

(16) 

(1 + K,) 

is the maximum of the envelope when there are no PMQ 
forces (K2 = 0) and 

g = (18) 

The quantity g represents the modification of the 
envelope's maximum caused by the PMQ forces. If 
g < 1, then a smaller beam is achieved by adding the 
PMQ focusing. A necessary condition for g 5 1 is 

4K: w, ' 
K2)------ - . 

0 1 + K, w2 
(‘91 

We considered an example in which we added PMQ focus- 
ing to the first part of the Los Alamos accelerator 
test stand (ATS) RFQ. We took w~/w, q 0.22, which 
corresponds to a magnet period of 57.1 mm. For our 
case, Kl = 0.096; therefore, the condition of Eq. (19) 
gives 

Kpz 7.2 K, . (20) 

To get g < 1, we need an unreasonably strong PMQ fa- 
cusing system (479 T/m PMQ gradients in our example). 
Weaker PMQ focusing just makes things worse. 

Numerical Simulations 

For our numerical simulations, we used a long 
section of RFQ structure whose RFQ parameters were 
fixed at the values corresponding to those at a point 
1 m from the entrance of the Los Alamos ATS RFQ linac. 
To this structure with fixed RFQ parameters, we added 
a PMQ force whose gradient varied linearly from zero 
to 137.6 T/m in 100 rf periods. The magnet period was 
57.1 tlnn. A beam, matched to the entrance of this 
structure by the method of adiabatic deformation, was 
traced through the structure. This procedure ensures 
a matched beam throughout and eliminates confusion 
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from mismatch effects. Figure 1 shows the rms beam 
sizes in the transverse directions as a function of 
rf period number. The plots correspond to the time 
in the rf phase when the rf force is maximum focusing 
in the y-direction (note the size is slightly larger 
in the y-direction than in the x-direction). The 
matched beam envelope contains both the rf and the 
PMQ frequencies, but not the betatron frequency. 
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Fig. 1. The rms beam sizes, at the rf phase at which 
the forces are maximum focusing in the y-direction, 
as a function of rf period number. The PMQ strength 
is linearly increasing throughout, starting at a 
value of zero. Although the average beam size de- 
creases, the peak beam sizes do not decrease with 
increasing magnet gradients. 

Because the points plotted are integral numbers of rf 
periods apart, only the PMQ frequency is evident in 
the graph. The important feature of our result is 
that, although the average transverse beam size de- 
creases, the flutter amplitude (at the PMQ frequency) 
is so large that the peak amplitude does not decrease 
from the initial value when there was no PMQ force 
present. Consequently, in this parameter regime, the 
addition of the permanent magnets does not increase 
the focusing strength. 

Conclusion 

We found that permanent-magnet quadrupoles are 
not helpful in increasing the transverse focusing 
strength in an RFQ linac. The regime studied was 
the low-energy section of a high-brightness hydrogen 
ion RFQ with PMQs of the shortest practical period. 
Applications that would allow shorter (in relation to 
the rf cell length) magnet periods may be more favor- 
able. There is also the possibility that permanent 
magnets may be helpful in an RFQ structure to help in 
matching between the time-dependent focusing of the 
RFQ and the space-dependent focusing of adjacent 
structures. 
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