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Abstract 

The Robinson instability problem' is developed in 
three stages. The first step is to derive the 
synchrotron oscillation equations in the abscence of 
beam loading (unloaded case). Next, the equations are 
evaluated in the presence of beam loading at the 
fundamental rf frequency (statically loaded case). 
Finally, the system is redeveloped taking into account 
beam loading at the synchrotron sidebands (dynamically 
loaded case). 

Following the theoretical development, the results 
are applied to calculate the synchrotron frequency in 
the presence of beam-loading, automatic-gain-control, 
and automatic-tune-control. The results of this 
calculation are compared with data from the NSLS VUV- 
ring, a 750 MeV electron storage ring. 

Unloaded Case 

In electron storage rings, radio-frequency 
accelerator cavities are necessary to replenish the 
energy continually lost by the orbiting electrons to 
synchrotron radiation. The time-dependence of the 
electric field in the cavity couples with the energy- 
dependence of the electron revolution period to produce 
'synchrotron oscillations.' 

Consider a circulating electron with an energy 
that deviates by an amount E from the design energy, 

EO. Corresponding to this energy deviation, there is 
a deviation, 6r, of the rotation period from the 
synchronous period, ro, given by 

Expanding the derivative of T in terms of partials with 
respect to the length of the orbit, L, and the 
velocity of the particle, v, yields 

6T = (gg+gg) E . 

Introducing the definition of the 'momentum compaction 
factor', 

0 

(3) 

gives 

6+-E. (4) 
0 

In general, due to relativistic effects, n experiences 
a change of sign at the 'transition energy', Et. In 
electron machines though, injection typically occurs 
above transition so that 'I, as defined above, is 
strictly positive. 

A more convient variable than 6~ is @, the phase 
of the rf voltage in the accelerating cavity when the 
electron arrives. The change in 0 per revolution is 
related to 6~ by 

*Research supported by the U. S. Department of Energy. 

Aa = Wrf bT (5) 

where Wrf Is the frequency of the accelerating 
voltage. Then, introducing the 'smooth approximation', 

i z AOITo ) (6) 

yields the 'phase equation', 

(7) 

Considering now the change in energy of a 
circulating electron per revolution, Ae, one has 

As = eic cos Q - U(E) , (8) 

where e is the absolute value of the electron charge, 
i, is the amplitude of the cavity voltage and U(E) is 
the energy lost to radiation per revolution. Writing 0 
as the sum of a time-independent part, $s and a small 
time-dependent part, 0, and expanding U about E. gives 

AE = e ire (cos$, - +sin+s) - U. -$ E . (9) 

The last term on the right-hand side leads to 
'synchrotron damping', a seperate topic, and will 
therefore be dropped. 

Using the time-independent phase, $s, to cancel U 
0 

yields the defining equation for the synchronus phase. 

(10) 

The remaining term in the equation for As, yield, 
after smoothing, the 'energy equation.' 

. 
E St- 

L 

eV 
C 

T 
* Q (11) 

Differientiating the phase equation and 
substituting into it the energy equation gives the 
'oscillation equation'. 

w . . 
d 

rf'? e% = - -- sin@ 
E. T S*+ 

0 

Defining the synchrotron frequency, ws as 
. 

w2 = mrfn eVc 
S 

7 sin+ 
E. 0 s ' 

the oscillation equation can be rewritten as 

1ity of the osc Since n is poistive, stabi 
requires that 

illations 

(12) 

(13) 

(14) 
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sin(ws) > 0 or 0 < 0, < m. (15) 

But from eq. lo', since Uo is positive, one has 

- n/2 < $s < n/2. (16) 

Consequently, 

0 < $s < r/2. (17) 

In the absence of beam-loading, the cavity 
voltage, Yc, is equal to that supplied by the rf 
generator, Irg. The situation is depicted in the 
phasor diagram, fig. 1. The reference vector chosen 
for this diagram is -Tb, the negative of the beam 
current or the location of the electrons. Thus the 
electrons are seen to ride the falling side of the rf 
wave. 

Figure 1. Phasor diagram of 
cavity voltage, unloaded case. 
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Figure 2. Phaaor diagram of 
cavity voltage, statically 
loaded case. 

Statically Loaded Case 

This case is illustrated in fig. 2. Taking Z. 
to be the impedance through which the beam 
current contributes to the fields in the accelerator 
cavity, the phase of Z. is defined as 

(18) 

Soley for the purpose of drawing fig. 2, it has been 
assumed that 

- n/2 < Gzo < 0. (19) 

The voltage in the cavity is given by 

;c = [Cgcos6 g - ~b~Zo(COS~ZOICOS(Wrft) (20) 

- [Ggsin$ g - iblZo(sin~zolsin(wrft) , 
where ^rb is the Fourier amplitude of the beam current 
at Wrf. The accelerating voltage seen by the beam is 

V .=[ irgcos9 g - ~bJzo(cos~zol 

- jirgsin$ g - ib~Zo(sin~zol 0 * 

(21) 

Equating the + independent term with the energy loss 
term gives 

$g = acos( 
"o'~ + ib~zo(cosezo~; ~ = acOs '0 -. 

i c ^ 
eV 

g C 

Solving for the synchrotron frequency gives 

2 mrfne w =- 
S EoTo 

( dg sin+ g - fbJZo(sin~Zo~ 

w rfne =- 
EoTo 

i'csin$c. 

Dynamically Loaded Case 

(22) 

(23) 

In the preceding section, a calculation was 
performed to determine the frequency of synchrotron 
oscillations in the presence of beam loading. The 
calculation was not self-consistent in that the beam 
current used to load the cavity did not itself contain 
the synchrotron oscillations. The appropriate beam 
current to use is 

I, = R,[e 
i&t + $1 

1 (24) 

with 

$ = oeetcos(mst) (25) 

where a, the amplitude of the phase oscillation, is an 
infintesimal and 8 is a growth rate to be determined 
along with ws. The voltage In the cavity is 

vc= 
- i 

tgcow$ -I g ^b [(zo(cos'zo - $ (Z+(sinCwst+O,+) (26) 

+(Z-lsin(-wst + +s-))I} cos(wrft) 

- {Ggsinmg-ib [IZoJsin$so- ~Iz+(cos~wst+~z+) 

+IZ-(cos(-wst + $,_))]I sin(wrft) 

where Z+ and Z- are the cavity impedance at the upper 
and lower sidebands respectively. The accelerating 
voltage seen by the beam is 

Vc=i.gcosOg-ib(Zo(COs~ZO-ib $(IZ+(sin(mst++z+) (27) 

+(Z-/sin(wst + Oat)) 

-(cgsin+ g - i,lZo(.in$so)$ 

Substituting into the energy equation and cancelling 
the phase-oscillation-independent terms with the 
energy-loss term results in same equation for the 
stable phase angle as in the statically loaded case. 
The oscillation equation resulting from the phase- 
dependent terms is 

. . 
$ = z [(-Vgsin$g+?b Im(Zo - 2 )) cos(mst) (28) 

- i, Re(A2) sin(wst>] oeBt 

where 

Zr Z++Z-) ; AZ +2+-Z-). (29) 
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Beam-Loading in the VUV-Ring 

The rf system of the NSLS VUV-ring contains two 
slow feed-back systems. 'Ihe first is the automatic- 
gain-control circuit, AGC, which maintains constant the 
total rf voltage in the accelerator cavity. The other 
is the automatic-tune-control circuit, auto-tune, which 
adjusts various tuning mechanisms to maintain constant 
the phase relationship between the rf generator current 
and total voltage. 

Expanding s using eq. 25 and taking advantage of the 
orthogonality of sine and cosine, the oscillator 
equation can be decomposed to yield the system of 
equations 

82 - w; = E (-Vgsin$g+?bIm(Zo - 2)) (30) 

and 

w 
rfne 

28ws = Er fbRe(AZ) . . 
0 0 

At this point, it is necessary to fix the sign of 

% - Since 0 is the phase by which the cavity voltage 
leads the electrons, it is clear that when o is 
maximally positive, E must be negative going and thus 
ws must be positive. The first stability condition 
then follows directly from eq. (31) by requiring 0, the 
growth-rate, to be non-positive. Thus, stability 
against phase-oscillations requires 

The affect of AGC has already been incorporated in 
the preceeding derivation simply by using V, in 
equations 33 and 34. The affect of auto-tune is to 
make wc in equation 36 a function of Ib. With the 
above somewhat simplified, assumptions concerning auto- 
tune, the functional dependence of wc is given by 

w + [- x+(x2+4) ] l/2 
C 

where 

Re(Z-] > Re(Z+) . (32) -2)1/2 iR U 
X E [((l - r + tanso) + (+)-I + tanso]/Q, (39) 

Comparing the right hand sides of equations 23 and 30, 
one finds that the beam loading term proportional to 

L 
eV 

Im(2,) in eq. 23 is countered in eq. 30 by the term r-2 , (40) 
in Im(Z). The term in Z, is due to infitesimal uO 

deviations in the arrival time of the electrons whereas 
the term in Z is due to infinitesimal currer$s in and 6, is the zero-current turning angle. 
the side-bands. Substituting for 6 and using V, to 
represent the amplitude of the cavity voltage due A computer program has been written to solve the 
to non-infinitesimal current sources, eq. 30 can be system of equations (34, 36, 38) for us. Figure 3 
rewritten as compares experimental data from the NSLS WV-Ring with 

results of this calculation. In the calculation. U, = 
 ̂

&$E! 
14.6 K~V, 6, = IO", and R/Q = 65n. The theoreti:al a*- 1 

Re(AZ))' 
w 

= ~(fcsin$s+?bImCZj) (33) 
curves, in order of increasing ws, correspond to Q = 

S 0 8000 and 12000. 0 0 0 0 4000, 
S 18 

I 

or using eq. 23 as 

'b 
Re(AZ))2 = 1+ 

2, Im(Z) 
. 

so S 
2iTcsin$s icsinOs 

Neglecting the second term on the left hand side of eq. 
34 leads to an underestimate of the synchrotron 
frequency. Consequently, calculation of the beam 
current required to shift the synchrotron frequency to 0 C-3 cn ,a ma 
zero, neglecting this term, yields a conservative 
estimate of the maximum allowable current. This 

results in the second of Robinson's stability criteria. 
CUPPent (ma) 

Figure 3. Comparison of data 

+ sin+ with calculation (see text). 

Im(Zo) > -c (35) 

'b 
Clearly, there is little agreement between data and 

calculation other than the sign of the slope. Great 

If one now assumes the single-pole resonator form uncertainty exists in the interpretation of the data as 

for the cavity impedance, well as values of constants in the calculation. Also 
no estimate of the affects of higher-order-modes has 

R been made. 
Z(W) = 

1+& - 2) 

(36) 
Further experimental measurements are planned 

C 
including the region of parameter space where ms 
decreases with increasing beam current. 

where R is the shunt impedance, 0 is the quality 
factor, and wc is the resonant frequency, then Reference 

results 32 and 35 can be written as 1. K. W. Robinson, CEA-11 RF Acceleration 11 (1956) 

C sin+ 
and CEAL-1010 Stability of Beam in R.F. System 
(1964) see also M. Lee and L. Smith, Steady State 

o<- Im(Z)<+ . (37) 
0 

Relations and the Robinson Instability for the PEP 

Ib 
RF System, PEP-Note-222 (1977). 


