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Summary 

The method to construct a self-consistent particle phase 
space distribution, representing a continuous charged 
particle beam moving through a spatially constant focus- 
ing device, is reviewed. Subsequently, an approach to 
extend this theory to periodic focusing systems is out- 
lined and discussed. 

1. Introduction 

It is known1'2 that for constant focusing forces any par- 
ticle distribution, f, in the 4-dimensional transverse 
phase space depending only on the Hamiltonian of the sys- 
tem, f=f(H), is a stationary (self-consistent) sol- 
ution of Vlasov's equation. For periodic systems under 
space charge conditions, a self-consistent distribution 
is obtained if all phase space points form a homogeneous- 
ly populated hyperellipsoidal surface. Since this type 
of distribution, usually designated as the "Kapchinskij- 
Vladimirskij" (K-V) distribution, is not "physically 
realistic", it is important for our understanding of 
beam transport phenomena to ascertain whether self-con- 
sistent non-K-V phase space distributions exist for 
periodic focusing systems. 
In this report, a canonical transformation will be pre- 
sented, that correlates the beam transport in a constant 
focusing system with the beam transport in an "equiv- 
alent" periodic focusing system. If the distribution in 
the constant focusing system is self-consistent, then, 
as a consequence of the correlation, the distribution in 
the periodic focusing system will also be self-consis- 
tent. The conditions for this mapping in order to be 
valid will be investigated. Finally, results of comput- 
er simulations rwill be presented to verify this 
approach. 

2. Constant Focusing Systems 

If we assume the beam to be a nonneutral, collisionless 
plasma, Liouville's theorem is valid. Considering an 
unbunched beam moving through a spatially constant 
focusing system, an infinite variety of stationary par- 
ticle phase space distributions exists, even if the 
space charge forces are not negligible. Taking H as the 
Hamiltonian of a single particle and the axial position s 
as the independent variable instead of the time, the con- 
dition for a phase space distriburion f to be self-con- 
sistent is obtained readily from Liouville's theorem: 

df=o <=> 
ds 

g + {H,f} = 0 , (1) 

f = f(H) => af=, 
as 

For a round beam in an azimuthally symmetric focusing 
system, the Hamiltonian can be written in the following 
dimensionless form: 

H(r,r') = ir" L o + =lk2r2 + *K-V(r) , (2) 

where r2 := x2 + y2 and r" := x:' + y" denote the 
radial position and the transverse angle, respectively. 
The "generalized perveance" K is given by: 

K = 2I/I,,B'X' , IO = 4ns,c'/q 

The focusing constant k, is correlated with the strength 

of the focusing field. If we use a long solenoid as the 
focusing device, then for a charged particle of the 
charge state q, rest mass m, and velocity cB, k, is given 

by kO = qBp/2m,cBT For this focusing system, the 

coordinates r,r' refer to the rotating Lamor frame. The 
dimensionless collective space charge potential, V(r), 
produced by all beam particles follows from Poisson's 
equation: 

+& (r & V(r)) = -4n.g(r) , (3) 

wherein g(r) describes the charge density in the trans- 
verse real space. It is obtained by integrating the 
phase space distribution function over all transverse 
angles: 

a"(r) 
g(r)=n. I f(H(r,r')) d(r") (4) 

0 

The upper boundary of integration a ':(rj := r*2 
max(r) 

follows from the maximum transverse energy Ho of a beam 

particle: 

a'*(r) = k:.(a' - r2) + K.(V(a) - V(r)) , 

where eae stands for the beam radius. If we introduce 
the quantity "effective potentialw W(r) as the sum of the 
focusing and the space charge potential: 

W(r) = fkfr' + SK-V(r) , 

equations (3) and (4) can be combined yielding the fol- 
lowing inhomogeneous integro-differential equation for 
the self-consistent effective potential W(r) (i.e. the 
effective potential of a stationary phase space dis- 
tribution): 

Wir) 
i$r (r & W(r)) - 4n'K. J f(Hj dH = 2kf , (5) 

W(a) 

wherein f(H) is a normalized arbitrary phase space den- 
sity function. Equation (5) has analytical solutions at 
least for two types of functions f(H). 
For the "K-V" distribution function: 

a) f(H) = c,*6(H - H,) , 

where 6 stands for the Dirac-6-function, the solution of 
(5) is given by: 

W(r) = +kZr2 + +K , k2 := k2 o-K/a2 . 

Due to the quadratic effective potential in absence as 
well as in presence of space charge forces, this type of 
distribution leads to linear equations of motions 
throughout. 
b) f(H) = c,.O(H, - H) , 

where 0 denotes the step function, means to fill the 
phase space homogeneously inside a bounded volume (which 
remains constant according to Liouville's theorem). 
Therefore, f(H) is usually designated as the lIwater bag" 
distribution, referring to the analogy of an incompress- 
ible fluid inside a closed bag, which can change its 
shape but not its volume. The solution function W(r) of 
equation (5) can be expressed in terms of the modified 
Bessel function I,: 

W(r) = W(aj.[l - K,&2-(1 - ID(Krj/ID(Ka))l . 

It contains a dimensionless spacecharge parameter ka, 
that can be defined only implicitly: 

K'k2a2 ! 0 = I,(ka)/I,(Ka) 

W(r) is quadratic only in the zero current limit (Ita+O). 
For high currents it is nearly constant in the interior 
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of the beam and rises sharply at its boundary. Therefore, 
it is often called a "reflecting wall" potential. 
For the Gaussian distribution: 

Cl f(Hj = c,.exp(-c,H/H,) 

equation (5) leads to a differential equation, which can 
only be solved numerically. Especially for high cur- 
rents, W(r) does not differ very much from the equivalent 
"waterbag" case. 

3. Periodic Focusing Systems 

For economical reasons, realistic focusing channels con- 
sist of discrete focusing lenses. Their maximum accept- 
ance is obtained, if these lenses (i.e. quadrupoles or 
solenoids) are placed periodically along the beam trans- 
port line. In the following, $(E,n,c',n') will denote a 
stationary phase space disrribution function in a con- 
stant focusing system, and f(x,y,x',y';s) a distribution 
in a periodic system. The length of one focusing period 
will be denoted by "S". 
As before, an unbunched beam for which Liouville's theo- 
rem (1) is valid will be considered. By combining (1) 
with the equation of motion for the individual particle, 
we obtain Vlasov's equation: 

g + r [x.,af - 2 

i 1 ax. (ki(s).x. 1 - ?K.E_)~,] = 0 . (6) 
1 1 

The electric field components Ex, Ey included herein are 

correlated with the particle distribution function, f, 
by Poisson's equation: 

div G(x,y;s) = 4n.IJ f(x,y,x',y';s) dx'dy' . 
-m 

Obviously, f(x,li,x',y';s) is a stationary solution of 
Vlasov's equation', if it can be expressed as a function 
of a constant of motion C : f = f(C). In this case. beam 
transport is a reversible process and therefore associ- 
ated with a conservation of the beam entropy. 
For constant focusing systems, the Hamiltonian (2) is a 
constant of motion (C = H), so any particle distribution 
depending only on the Hamiltonian of the system is a sta- 
tionary solurion of Vlasov's equation, as already stated 
In sectlon 2. 
For periodic channels, the appropriate Hamiltonian is 
not a constant of motion, hence f = f(H) is no longer a 
sufficient condition for the distribution function f LO 

be self-consistent. In order to establish the constant 
of motion for a beam particle moving in a periodic chan- 
nel, we map the s-dependent Hamiltonian of the periodic 
system via an s-dependent canonical transformation to a 
new constant. Hamiltonian. Physically, this means co 
replace the periodic beam transport channel by an 
"equivalent" constant focusing system. The "smoorh 
approximation" technique*, that deals with the averaged 
values of periodically modulated beam envelopes in order 
to obtain analytical formulas describing the averaged 
beam behavior, is based implicitly upon this replace- 
ment. 
The canonical transformation can be written clearly, if 
we introduce the quantity "generalized phase advance"'. 
With the rms quantities <ox> and <x2>, it can be defined 

as: 

+,(s) = s{ ’ <Ex>/<Xz>(Z) dz , 

and similarly for the y-direction. The difference of the 
generalized phase advances of the periodic (p) and the 
constant (c) transport system will be abbreviated by 
x(s): 

X(S) = +J x pw - e, c(s) . 3 

The transformation that correlares the particles forming 
the distributions f = f(x,y,x',y';s) in the periodic and 
$ = s(s,n,S',n') in the constant transport system is 
given by6: 

2517 

I-“.1 =BA [;,I (7) 

wherein 
\ X’J 

cos x 
A= 

-J<S ">,/<.$*>.sin 

J<S'>/<<">.sin X 

x cos x 1 
0 QZ>/~XZ> 1 J4>/q2> 

B= 
<xx ( >/J<x'><g=> 

The corresponding transformation must be used for the 
y,y'-plane. According to the unit dererminants of the 
matrices A and B, the beam emittances pertaining to the 
distributions f and @ agree. 
With U(x,y;s) as the space charge potential of the new 
distribution f, and under the precondition that the 
function r(x,y;s), defined as: 

r(x,y;s) = +K[U(x,y;sj - fxz<xa$!<x'> - fyQyau>/<y2>] 
ay 

is an invariant wizh regard to the transformation (71, we 
obtain a new Hamiltonian, that has the same form as the 
original one (2): 

H = f(xt2 + y") + +(k$)x2 + k;(s)y2) + fK.U(x,y;s). 

As a consequence of the canonical transformation, the 
function kx(s) is defined by the following differential 

equation: 

$&&+k;(s)&=+K<xEx',J;;;i'-<Ex'2,J<X'>1 = 0 

The corresponding equation holds for the y-direction. 
These coupled differential equations are known as the 
"rms envelope equations"'. The emittance <cx> is corre- 

larred by eq. (7) with the emittance of r;he distribution $ 
in the equivalent constant focusing system. If $ is a 
stationary distribution, hence associated with a con- 
stanr: emittance, the emittance of the transformed dis- 
tribution will be constant, too. In this case, the rms 

envelope equations are closed and can therefore be used 
to determine the S-periodic moments <x2> , <y'>. <xx'> 
and <yy'> pertaining to a matched beam at a given posi- 
tion s within the focusing period, which are included in 
matrix 8. 
The constant of motion C for a particle moving through a 
periodic system is obtained by expressing the Hamiltoni- 
an of the equivalent constant focusing system in the var- 
iables of the periodic: 

c = +(xz<x'z > - 2xx'<xx'> + x'2‘zx=r)/q=> 
+ +(y=<y'=> - 2yy'<yy'> + y'= <y*>)/<q'> + r(x,y) 

Finally, we have to investigate the precondition for rhe 
validity of this approach, i.e. that r(x,yj has to be 
invariant versus the canonical transformation (7). As 
can be seen immediately, it is fulfilled for any X(S), if 
either 
l K=O, i.e. the space charge forces are negligible, 

or 
l U(x,y) = cx2 + dy* , i.e. the space charge potential 

is quadratic before and after the transformation (7). 
This is only nrue if the underlying phase space dis- 
tribution is of the K-V type. 

In both cases, the function r(x,y) vanishes identically. 
The equations of motion are linear then, and (7) gives us 
the correlation between the harmonic oscillation of the 
beam particles inside a constant focusing system and the 
"pseudo-harmonic" particle oscillations occurring during 
the beam propagation through an arbitrary periodic 
focusing system. 
In all other cases, the precondition can only be ful- 
filled if X(S) = 0 , i.e. if the phase advances in both 
systems agree. Otherwise, the space charge porential 



2.518 

C;x,y;s) of the distribution f(x,y,x',y';s) would be a 
function of the transverse angles .P,' and n' of the parti- 
cles forming the distribution Q(E,n,E',n'). This means 
that the transformation (7) does not provide us any more 
with a time-dependent relationship of the individual 
particle's motion in both types of transport systems. 
The existence of this restriction is not surprising, 
since this relationship, which is not linear for non-K-V 
distributions under space charge conditions, cannot be 
supplied by a linear transformation as given by (7). 
On the other hand, it is sufficient to show that the 
canonical transformation (7) establishes the correlation 
between a constant and the appropriate periodic focusing 
channel at fixed positions s along the transport lines. 
The distribution function f is a stationary solution of 
Vlasov's equation (6) pertaining to a periodic system, 
if f reproduces itself exactly passing through one 
focusing period. Since a stationary distribution Q in 
the constant focusing system is a constant of motion, a 
necessary and sufficient condition for the distribution 
function f to be S-periodic and hence stationary is that 
the beam transport through both systems can be corre- 
lated at integer multiples of one focusing period. If 
the phase advances of both systems agree at these points: 

X(s) = 0 <=> s = so + nS , n = O,l,Z,... , 

the transformation (7) represents this correlation. 
Therefore, for non-K-b distributions under space charge 
conditions, the two types of beam transport systems must 
be "equivalent", i.e. the phase advances over the dis- 
tance S must agree for distributions correlated by (7) 
and carrying the same current: 

a := q,(s) = q,(s) 

Due to the correspondence of the beam emittances associ- 
ated with both distributions, f and Q, under these cir- 
cumstances the zero current phase advances agree as 
well: 

00 := Q;(s) = Q;(s) 

If we transform Poisson's equation 

AV(<,n) = -4n.JI Q([,n,<',n') d<'dn' 

at positions, where x(s) = 0 via (7) into the new coordi- 
nate system, it follows that 

V(C,n) = U(x,y;s) , 

if the beam keeps its azimuthal symmetry. Consequently, 
the precondition is fulfilled for round beams as they 
occur in interrupted solenoid channels, where any point 
sg within the focusing period can be chosen to match the 
beam from the constant to the equivalent periodic sys- 
tem. Both types of transport systems are thus correlated 
by (7) point-by-point along the the focusing period, and 
C represents indeed the constant of motion for the peri- 
odic system. 
In quadrupole channels of the FODO-type, there are only 
two points within one focusing period, where the envel- 
opes agree in both transverse directions, i.e, where the 
beam is azimuthally symmetric. Therefore, matching has 
to take place at these specific axial positions sO, in 
order to conserve Poisson's equation strictly. Fig. 1 
shows the calculated emittance growth factors versus the 
number of periods of the GSI quadrupole channel' for 
three different initial phase space distribution func- 
tions. For a comparison, the growth factors as they 
would occur for an equivalent constant focusing channel 
are included in this figure. 
The "geometrical" waterbag distribution (i.e. a homo- 
geneous filling of the phase space within an ellipsoidal 
boundary), which is not self-consistent under space 
charge conditions, shows a rapid emittance growth due to 
a reduction of the non-linear space charge field energy' 
in both types of transport systems. 

The self-consistent waterbag distribution as well as the 
K-V type shows practically no emittance growth in both 

cases, periodic quadrupole channel (p) and equivalent 
constant focusing channel (c). Since the results even 
for the K-V distribution deviate from the theoretical 
value of 1.0, the remaining emittance growth, which in 
this case amounts to about 0.2% after 15 periods, can be 
attributed to the limited accuracy of the computer simu- 
lations. 
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Fig.1. Emittance growth factors versus the number of 
periods obtained from particle simulations for 
initial K-V, self-consistent and "geometrical" 
waterbag distributions for the GSI quadrupole 
channel (p) and the equivalent constant focusing 
channel (c) at oD = 60°, o = 25' 

4. Conclusions 

The theory described here extends the work done by 
Sacherer', who first derived the envelope equations for 
continuous beams which were not restricted to the K-V 
distribution. Yet for not self-consisrent particle 
phase space distributions they are of little practical 
use, since "the time dependence of the rms emittance must 
be known a priori" (Sacherer). On the other hand, we are 
interested to know the conditions where the rms emit- 
tance becomes a constant of motion. Extending the con- 
cept of equivalent beams (i.e. beams whose second 
moments and currents agree), the idea of "equivalent 
beam transport systems" has been introduced. Beam 
transport systems carrying matched beams with corre- 
sponding rms emittances and beam currents are called 
"equivalent", if they yield the same generalized phase 
advances along the focusing period S as well as along the 
distance S for the constant focusing system. For a con- 
stant focusing channel it is possible to construct arbi- 
trary self-consistent non-K-V distributions. If these 
distributions are rms-matched to an equivalent periodic 
focusing channel, they show the same self-consistent 
behavior. This matching transformation conserves 
Poisson's as well as Vlasov's equation strictly, if the 
beam keeps its azimuthal symmetry. Under these circum- 
stances, the rms envelope equations form a closed set to 
describe the evolution of the rms size of the beam, owing 
to the fact that the emittance is a constant of motion. 
As has been verified by computer simulations, we obtain 
non-K-V distributions this way, that conserve their rms 
emittance under space charge conditions even if passing 
through a periodic quadrupole channel. 
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