BEAM DYNAMICS TA GABE*

J. i. Poukey, P. D. Coleman, and T. W. L. Sanford
Sandia National Laboratories
Albuquerque, NM 87185

Abstract

MABE ${ }^{1,2}$ is a multistage linear electron accelerator which accelerates up to nine beams in parallel. Nominal parameters per beam are 25 kA , final energy 7 MeV , and guide field 20 kG . We report reoent progress via theory anc simulation in understanding the beam dynamics in such a system. In particular, we emphasize our results on the radial oscillations and emittance growth for a beam passing through a series of accelerating gaps.

Single Gap

A typical MABE accelerating gap is shown schematically in Eig. 1. The figure represents the trajectories of electrons in a co kA deam with initial kinetic energy of $1 \mathrm{MeV}(y=3)$, final kinetic energy of 3 MeV (gap voltage $=2 \mathrm{MV}$). The calculation was cone with the 2-D electromagnetic particle code MAGIC, ${ }^{3}$ using methods described previous? y for similar problems, ${ }^{4}$ including foilless diodes, ${ }^{5}$ gaps, ${ }^{5}$ extraction from the guide field, 4 and the effects of beam stops. ${ }^{7}, 8$ In addition to the beam, Fig. 1 shows the parasitic gap leakage of 19 kA . Gap losses such as this have been a serious problem in MABE, ${ }^{2}$ because of the coaxial design of the gap. The intention of this design is to shield the beam rrom the selfmagnetio $f i e l d s$ of the other eight beams.

Eig. 1. Particle simulation of a MABE accelerating gap. The lower trajectories represent the beam (25 kA, Y(LILS) - $3, \gamma($ RHS $)=7$), the upper trajectories represent the parasitic leakage electrons (19 kA). The gap voltage is $2 \mathrm{MV} . \mathrm{B}_{0}=20 \mathrm{kG}$.

* This work was supported by the U.S. Department of Energy.

Tho offect of the gap in induoing radial oscillations in the beam is negligible for the case of Fig. 1. The reason is that the cyclotron wavelength λ_{c} is approximately equal to half the gap spacing d. This is an "antiresonance," as we now show.

The perturbing radial electric field δE_{r} of an accelerating gap induces radial oscillations (zero frequency oyclotron waves) in an azimuthally symmetrio electron beam according to ${ }^{9}$
$\delta R(z)=\int_{\text {gap }} \frac{e}{m c^{2} Y k_{c}} \delta E_{r}\left(z_{0}\right) \sin k_{c}\left(z_{0}-z\right) d z_{0}$,
where the integration is over the interval of width $=d$ where δE_{r} differs from zero, and where δR is the perturbed beam envelope, mm^{2} is the average beam energy (kinetic and rest mass), e is tre electron charge, and $k_{0}=2 \pi / \lambda_{u}=e B_{0} /$ mY V_{0}, with guide field B_{0} and beam velocity V_{0}. Let us idealize the shape of δE_{r} by tho somewhat realistic
$\delta E_{r}(z)=\phi_{1} \delta(z)-\phi_{2} \delta(z-d)$,
where $\phi_{1}=\phi_{2}>0$ by Gauss' Law, as shown by Adier. 10 Of course, the main deviation of Eq. (2) from reality is that the peaks in δE_{r} should have a finite width and amplitude, as in Fig. 2a, but the delta functions are sufficient for our purpose. We obtain
$K \delta R(z)=-\phi_{1} U(z) \sin k_{c} z+\phi_{2} U(z-d) \sin k_{c}(z-d)(3)$
where $K=m c^{2} \gamma k_{d} / e$, and $U(z)=1$ for $z>0,0$ for $z<0$. This resuit is plotted in Fig. 2b, where the total δ ? is given by the sum of the two sine waves.

Fig. 2. The analytic calculation. (a) Input δE_{r} of Eq. (2). (b) Output δR of Eq. (3), where the total δR is to be obtained by adding the 1 and 2 curves. Maximum δR amplitude resulls for $\lambda_{c}=2 d$.

Clearly oonstruative interference betweer the, and in $_{2}$ contributione ocours for $d=i_{c} / \frac{2}{}$, which we term "resonance" in the sense of maximum amplitude. More generatily,
$\lambda_{c}=2 d, 2 d / 3,2 d / 5, \cdots$ resonance
whereas the two waves ere out of phase for
$\lambda_{c}=d, d / 2, d / 3, \cdots$ antiresonance \cdot
Returaing to Fig. 1 and using the average λ_{c}, we f ind $\lambda_{0}=d / 2$, explaining why the rather large gap induced no oscillation on the beam.

To test these results for a realistic $\delta \mathrm{E}_{\mathrm{r}}(\boldsymbol{z})$, a series of calculations with a beam-envelope code was performed using the δE_{r} shown in Fis. 3. The envelope solver includes an effect neglected in Eq. (1); namely, tre z-variation of γ. However, we find basic agreement with Eqs. (4) and (5), as shown in Fig. L. Gere, the amplitude of $5 R$ is plotted.vs. λ_{c} / d (using the average λ_{c}). Note maxima in the amplitude at Gbout $i_{d} d=1.9$ and 0.3 , corresponding to Eq. (4), and minime at about 1.0 and 0.5 , corresponding to Eq. (5). The actual $5 R(z)$ obtaired for $\lambda_{c}=20$ is given : n Fig. 5 ; other points in Fig. 4 were obtained by varying λ_{c} and measuring the amplitude of the resulting final oseillation in similar fashion,

Fig. 3. $\delta E_{r}(z)$ at beam edge from Poisson solution for the fields of a squane mbetype gap accelerating a 25 kA beam.

Eig. 4. Amplitude of bealu envelope oscillation vs. λ_{0} / d, from solution to envelope equation in field $3_{0}=20 \mathrm{kQ}$, for a 25 kA beam in gap corresponding to Eig. 3.

We note several features of Fig. 4. First, the main $\lambda_{c}=2 d$ "resonance" is very broad; vaiues of λ_{c} / d from, say, 1.5 to 2.5 all give a substantial amplitude, so that if one wishes to cesign a system to miss this region, one must for typical parameters use a high voltage injector. Second, the relative amplitude in Fig. 5 is about 11%, carrying the beam edge to a radial excursion slightly less than halfway to the drift-tube wall. Thus, in this (and most) examples, being near $\lambda_{c}=2 d$ for one gap is not in itself cetastrophic. The danger comes for electrons which acquire this "large" oscillation and then reach the next gap with the wrong phase. Finally, we may compare the envelope result of Eig. 5 with the analytio Eq. (3). Estimating $\phi_{1}=\phi_{2}$ from Eig. 3, we get the maximum amplitude of 1.6 mm , compared with 1.2 mm in Fig. 5. Finally, we note from Eq. (1) that at very high γ, such that $\lambda_{c} \gg d$, the amplitude of δR decreases as $1 / \mathrm{Y} .10$

rig. 5. Beam envelope for "resonance" case $\lambda_{c}=2 d$ in Fig. 4. The drift-tube wall is at $r=1.25 \mathrm{~cm}$.

Multiple Gaps

We consider next the behavior of a beam as it passes through four gaps in series. An electron map from a sample simulation is given in Fig. 6. The

Fig. 6. Four-gap MABE simulation (electron map) using MAGIC. Beam: initially warm, 25 kA , input energy 1 MeV , output energy 9 MeV . Gaps: 2 MV each, $\mathrm{d}=3 \mathrm{~cm} . \mathrm{B}_{\mathrm{O}}=20 \mathrm{kG}$. The beam passes through the $\lambda_{g}=2 d$ resonance in gap 3 .
parameters usec earlier are again employed, except the input beam is "warm"; specifically, the initial r and θ veiocities V_{r} and V_{θ} were selected randomy from the interval ($-\infty / 10,+\infty / 10$). We note the sudden increase in radius after the third gap; this is accounted for by the fact tha亡 $\lambda_{c}=2 d$ there, a "resonance" from
Eq. (4). (Comparc Eig. 5.) The beam is accelerated from 1 MeV to 9 MeV by the E_{2} field seen in Fig. 7 ; the $\delta \mathrm{F}_{\mathrm{r}}$ of each gap is similar to that in Eig . 3 .

Fig. 7. $E_{z}(z)$ at $r=1.1 \mathrm{~cm}$ corresponding to $\mathrm{c} i \mathrm{ig}$. b.
Erom Fig. 5 we see that one effect of the gaps is to thicken the annulus somewhat; however the cumulative δR is only about 1 mm . A more interesting (but reiated) effect is the emittance growth. If we define emittance as the radius in transverse $Y V_{r}-Y_{\theta}$ phase space, the result is shown in Fig. 8. This "emittance" increases by a factor of about 4.5 in passing through four gaps. However, this definition includes the increase in y of about 4 per gap caused by the accelerating E_{z} of Fig . 7. If instead we define emittance in terms of $B_{\perp}=\left(V_{r}^{2}+V_{\theta}^{2}\right)^{1 / 2} / \mathrm{c}, 1$ (i.e., divice by y in Fig. 8), we find that the emittance actually decreases slightly as the beam traverses four gaps. (This would not be true for an initially "cold" beam, but in that case the emittance grows, levels off, and then decreases after many gaps.)

Fig. E. Y_{θ} vs. V_{r} phase space corresponding to Eig. 6. This illustrates the beam emittance growth as a function of the gap number, including the increases in $\%$.

To understand why 3_{1} should decrease after enough gaps that $\lambda_{0} \gg d$, recall that δR (induced by a single gap) $x 1 / \gamma$ so that the total cumulative radial
oscillation amplitude is limited to some value $3 R_{\text {lim }}$
(we assume no wall loss). Since the final
oscillation is still a (zero-frequency) Poyclotron wave, it follows that the associated B_{\perp} must be
$B_{\perp}=\frac{2 \pi \delta R_{\mathrm{D}} \mathrm{im}}{\lambda_{c}} \propto \frac{1}{y}$.
Thus the emittance as conventionally defined ${ }^{11}$ should decrease with gap number after many gaps.

Conctision

Based on the calclilations presented, there does not seem to be (in principle) an upper limit on the number of gaps which can be traversed by an initially good-quality beam from a carefully designed diode injector. The first few gaps are the most dangerous, especially if the "resonances" of Eq. (4) are not avoided. As Y becomes large enough tha: $\lambda_{c} \gg d$, the beam emittance should decrease as $1 / \gamma$. These results suggest a considerable advantage in beginning with a high-voltage injector.

We emphasize that all our calculations have been two-dimensional. Perhaps further studies of beam dynamics in high-current linacs should await the advent of efficient 3-D codes which can include phenomena such as "beam-breakup" and "imagedisplacement" instabilities. ${ }^{4,12}$ If these occur in systems such as MABE, they may dominate the azimuthally symmetric radial oscillations.

Acknowledgment

We gratefully acknowledge the advice and support of R. B. Miller.

References

[1] P. D. Coleman, J. J. Ramirez, D. E. Hasti, R. B. Miller, T. W. L. Sanford, J. W. Poukey, A. W. Sharpe, and C. W. Huddle, Bull. Am. Phys. Soc. 29, 1275 (1984).
[2] P. D. Coleman, "Beam Transport Results on the Multibeam MABE Accelerator," this meetirg.
[3] B. Goplen, R. Clark, J. MoDonald, and W. Bollen, Mission Research Corporation Report MRC/WDC-R-068, September 1983.
[4] J. W. Poukey, T. P. Hughes, B. B. Godfrey, and M. M. Campbell, IEEE Trans. Nuci. Sci. NS-30, 2389 (1983).
[5] R. B. Miller, K. R. Prestwich, J. W. Poukey, and S. I. Shope, J. Appl. Phys. 51, 3506 (1980).
[6] T. C. Genoni, M. R. Franz, B. G. Epstein, R. B. Miller, and J. W. Poukey, J. Appl. Phys. 52, 2646 (1981).
[7] T. W. L. Sanford, P. D. Coleman, J. W. Poukey, Bull. Am. Phys. Soc. 29, 1345 (1984).
[8] T. W. L. Sanford, "Measurement and Interpretation of Electron Angle at the MABE Beam Stop," this meeting.
[9] K. R. Symon, Mechanics (Addison-Wesley, 1971), P. 61.
[10] R. J. Adler, Phys. Fluids 26, 1678 (1983).
[11] A more conventional definition would be $2 B_{1}$ (max) Δr, where Δr is the width of the beam annulus. In these terms the initial emittance in Figs. 5 and 8 is about $0.08 \mathrm{~cm}-\mathrm{rad}$.
[12] R. J. Adlor, B. B. Gocfrey, M. M. Campbell, D. J. Sullivan and T. C. Genoni, Part. Accel. 13, 25 (1983).

