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A cyclic accelerator, the stellatron1~z*3, has 
been proposed to accelerate large electron currents 
in a magnetic field focusing configuration consisting 
of the combination of an ordinary weak focusing 
betatron field, a toroidal field, and a stellarator 
field. Early treatment& of space charge effects in 
the stellatron employed the ad hoc assumption of a 
circular beam of arbitrary, unspecified radius. In 
the present work we obtain an equilibrium 
distribution function for the P=2 stellatron, 
analogous to the K-V distribution function, which 
produces an elliptical beam of constant density, the 
major and minor radii and orientation of which are 
specified by the beam current and emittance, and by 
the externally applied fields. Single particle 
stability criteria and single particle tunes in the 
self-consistent fields are also given. 

Two basic types of stellatron have been proposed, 
the difference being in the P-number, where L is the 
number of field periods in the poloidal direction of 
the stellarator winding. Only the P=O and P=2 
devices, however, possess a finite magnetic field 
gradient on the central axis and so only these give a 
first order focusing field. 

In the P=o devicea consideration of equilibrium 
space charge effects is most simply done in the Larmor 
frame in which the two transverse degrees of freedom 
are decoupled; in this frame the usual K-V envelope 
equations are applicable and these give the 
parametric dependencies of the beam size on current, 
beam emittance, and applied fields. 

The situation is not as simple in the 11=2 
stellatronL, which is illustrated in Figure 1. 
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An analysis similar to the one presented here has 
been carried out by Gluckstern+ for a linear beam 
transport line. 

Particle Motion in the P=2 Stellatron 

We consider an electron of 
moving in a circular orbit of radius 

energy "eyocA 
r, in the B 

direction in the z=O plane in a vertical magnetic 
field BZo, Near this orbit we take the applied 
magnetic fields in a standard (r,e,z) cylindrical 
coordinate system to be 

B r * Bzo C-ny + p(y cosme - x sinme)] 
89 * %o 
B, = Bzo tl-nx + ~(x cosme + y sinm0)l 

(1) 

where B,, and Bee are constants, n is the usual 
betatron field index, x and y are the dimensionless 
displacements from the circle r=ro: x = (r-ro)/rO, y = 
z/ro, &J is a dimensionless measure of the quadrupole 
strength, and m is an integer, the number of 
quadrupole field periods around the circle. 

We assume that the beam itself is of elliptical 
cross section and constant density centered on the 
pomt r=ro, z = 0 and having axes of length a and b. 
The axis of length a is assumed to be tilted at an 
angle a from the '?(orQ direction. 

Using the applied fields of (1) and the self 
fields of a tilted elliptical beam, the paraxial 
equations of motion of a particle in the beam are 

II 
x + l-n + pcosme-2n bcos2a + asin'a 
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Fig. 1: Cutaway schematic view of the P=2 stellatron 
illustrating the magnetic fields. 

The continuous, twisted quadrupole focusing in the 
P=2 device has the effect of coupling both transverse 
degrees of freedom. Here we shall show that it is 
possible nonetheless to carry out an analysis in a 
self-consistent way by explicitly constructing a 4-D 
analog of the K-V distribution function. In addition 
to the explicit relations it yields, the distribution 
function may also be useful as initial data in 
analytical or numerical investigations of stability 
questions. 

where bo = BOB,,, ns = $/(2eDL,o), q, is the beam 
plasma frequency, WE = -4eeh/(meyoab), -e is the 
electron charge, Cl,, = eBso/(+yoc) = p,c/r, is the 
basic electron cyclotron frequency and a prime 
denotes d/de. At this point we have made no 
assumptions as to the Q-dependence of a,b, and D and 
in general these are unknown. 

To make progress we shall consider the special 
case n=$. We expect the results to be insensitive to 
the exact choice of n since the focusing will be 
dominated by the rotating quadrupole term (p will be 
much larger than n in general), Choosing n=$, then, 
and defining E=x+iy, the two equations in (2) may be 
expressed as 
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The form of (3) suggests that 

a-b 2ia a+be 1 c* = 0 
(3) 

we consider the 
following behavior of the beam radii and orientation 

a = constant 
b = constant 
a = m9/2 

Cd) 

which corresponds to a beam of fixed size aligned and 
twisting with the axes of the quadrupole. A bei 
satisfying (L) will be called a matched beam. 

For a matched beam Eq. (3) may be solved by 
defining a new variable in a coordinate system 
rotating with the quadrupole and beam axes. If we let 
E = +exp(imB/2) we find 

rl, = A+ei"+'+ utA:eel"+' * -iv-e 
+Ae 

iv-e 
+uAe _ - 

(5) 
where A* are arbitrary complex constants, Y, are the 
positive roots of 

2 Y * 
=;;+p12 * (ii&i2 t jt2)4 (6) 

where &mtb* ~=4-nstb~/~,G=~(+~(a-b)/(a+b), 

and 

[ 
lh2 " *tzm -4 

3 c; u = _. __--.- = --_1_ 
* 

; [ 
lAz_F;' ,(7) 

" --In f 2 1 
When they are real, Y* are clearly the number of 
oscillations a particle executes when traveling 
around the stellatron. we will sometimes refer to the 
+ and - oscillation modes as the fastjmd slow modes, 
respectively. Both are stable (wt is real and 
positive) if and only if the following three 

conditions are simultaneously satisfied: 

AA2 l-ml +$I210 

E;.+1-i2 
L LO (8) 

-1.0 0.0 u 1.0 2.0 

Fig. 2: Single particle stability plane including 
self field effects. u and v are defined in the text. 
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In the absence of space charge effects only the last 
of these is nontrivial. When space charge effects are 
present we may illustrate (8) in a play of two 
auxiliary variables, u=L$~~, v=I~l/~e as shown in 
Figure 2. Any experimant must be designed to operate 
wholly within one or the other of the stable regions 
shown in the figure. In the case a=b all results to 
this point, including Figure 2, reduce to those 
obtained in reference Cll. 

We shall consider a distribution function+ 
dependent only on the fast and slow mode amplitudes 
lA*l, which we may express in terms of I), and 41' using 

(5). Denoting by subscripts r and i the real and 
imaginary parts of V we find 

(9) 

IA-12= L 

D: 

~'+(l-U+)Ior-(l+U+)U'i 
1 2 

+ 1 V+(l+U+)vi+ (l-u+)*; 1 2 

D2 2 

where 

D 1 = v~(l+at)(l-a~) - v+(1-a+)(l+u-) 

D2 = -v-(l-u+)(l+u-) + v+(l+u+)(l-CT-). 

The distribution function we choose is analogous to 
the K-V distribution, 

f(VrA$, t Vi,V'l' = foaCf+lA+I 2 + f IA-1 
2 - 11 (11) _ 

where f,, f* are constants, independent of J, and $I' 
and 6 is the Dirac delta function. The distribution 
function (11) has the well known feature that its 
integral ,over any two of the four variables 
*,V:,Vi,Vi, considered as a function of the 
remaining two, vanishes outside of an ellipse and is 
constant inside the ellipse. For example, 
integration of (11) over 111: and W[, using (9), gives 
expressions for the beam radii: 

2 

a2 
r 

= + f+(l+oJ2 
t - I 

+ f (l+u+)2 _ 1 
(12) 

2 
2 'b 

b =qy 
[ 
f+(l-rrJ2 _ + f (NT,)2 1 

A circular beam results when f+o-+f-o+=O, which 
corresponds to the treatment in reference Cll. The 
expressions in (12) are not generally useful, 
however, until we specify the unknowns fk. These 
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constants may be related to the (unnormalized) beam 

emittances by integrating (11) over 4J-i and wi and then 
over wr and wr. One finds 

2 a2 e = -.- 
r f,f - i 

f,"T (ltu )2 + f/J: (l+aJ2 
1 

(13) 

2 b2 ei = y.7 
I 
f+v2(l-u-)2 + f+a+)2 

+ - 1 
where rrtr is the area in the r,U+, $$ plane and nai is 
the area in the rowi, wi plane. It is possible to 
specify the emittances dr and "i, solve (13) for f+ 
and f-, and substitute in (12) to obtain (rather 
complicated) implicit expressions for a and b. 
(Recall that Y and (r depend on a and b. ) In one 
particular case, though, this is easily carried out. 

-ce Case 21 = 0 

When & = m+b, : 0 th e quadruple axes are rotated 
at a spatial rate equal to the electron Larmor 
frequency in the toroidal field divided by the 
electron velocity, a' = - r&&2Vm. where f& = 
e%dw,c. The sense of the quadrupole rotation 

about the toroidal field lines in this case is 
right-handed, that is, in the same sense as ordinary 
electron gyromotion about the toroidal field lines. 

When A=0 the two degrees of freedom, wr and Vi in 
the rotating frame are decoupled. One easily finds 02 
= fl and the relations governing the beam radii, 

22 112 (eiro/b ) =2 t-b L 0 
- @ - 2" n 

atb 5 

(14) 

which of course are just the relations which would be 
obtained from the usual K-V envelope equation if 
written in the Larmor frame of reference. 

In Figure 3 we have plotted beam radii and fast 
and slow mode tunes versus current using (1.4) for the 
case b, = )r = 0 (i.e. a conventional betatron). Since 
the focusing is symmetric, a=b. The zero current 
value of the tune is just I/R = 1pj. (In these and 
subsequent figures we have taken er = "i = 0.5 r-ad-cm, 
r. = 100 cm, and mcz(yo-1) = IMeV.) 
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In Figure & we have plotted the same quantities 
(in the Lannor frame) for a betatron with an added 
toroidal field (800 = 1 kG, ,u=O) and in Figure 5 we 
have shown, again using (lL), the case (m=-bo=20, 
)&=50). We see that although the beam radii are 
naturally much larger in the weak focusing 
conventional betatron, the tune shift6 due to space 
charge are potentially much more serious in the 
modified betatron and stellatron devices. Currents 
may be limited to modest values in these, as in other 
strong focusing devices, by the tune shift effect 
unless dangerous resonant (especially, integer) 
values of v* are somehow avoided or passed through 
quickly enough. 
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Fig. L Beam radius and tune in Lanmr frame versus 
current for a modified betatron. 

s 20 
/ . 

4. F- 
i . 
1 _ 

id.,- 

+- _---- --- 

:I 

f 
--- ----_ 

-5 1 

----__ 

L{ 

/-ii 1; ‘i’,,, i’, ,i ,,,,/, ,; 

-__1 1. 
: 

rsr ,/,,, ,., ,,,, I,1 81 ,. 0. 2 3 4 i 5 0. / 4 i ii(fll I lrAl 

Fig. 5: Beam radii and tunes versus current for an 
P=2 stellatron (r;l=O , c(=50). 
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