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Summary 

Two dimensional Cartesian and axially-symmetric 
problems in electrostatics or magnetostatics frequently are 
solved numerically by means of relaxation techniques -- 
emolovins. for example. the program POISSON. In many 
s&h problems the ‘“sources” (charges or currents, and 
regions of permeable material) lie exclusively within a finite 
closed boundary curve and the relaxation process in 
principle then could be confined to the region interior to 
such a boundary -- provided a suitable boundary condition is 
imposed onto the solution at the boundary. This paper 
discusses and illustrates the use of a boundary condition of 
such a nature in order thereby to avoid the inaccuracies and 
more extensive meshes present when alternatively a simple 
Dirichlet or Neumann boundary condition is specified on a 
somewhat more remote outer boundary. 

In performing a relaxation computation on a mesh 
bounded by such a pair of curves (external to all “sources”), 
any full relaxation pass through the mesh may be followed 
by a step wherein the values of potential at points on the 
outer boundary are revised (up-dated) on the basis of a 
harmonic description of the potential function on the inner 

Introduction 

The proposed boundary condition may be most simply 
illustrated by specific use of plane-polar coordinates. Thus, 
with a circular boundary so located that no external sources 
are present, the potential function external to that boundary 
is expressible in the form 

co 

Co + C rwm ( 
m=l 

Cm cos m3 + Sm sin n@ , 
) 

in which no positive powers of r occur. Such a relation will 
permit one to extend the potential to a surrounding 
concentric circle of somewhat larger radius. If, in practice, 
values of potential are known at only a finite number of 
points on the inner circle, then of course only a finite 
number of harmonic coefficients (C,,,S,,) could be 
evaluated for such trigonometric representation of the 
potential function -- such a trigonometric series may, 
however, be adopted to provide adequate estimates of the 
corresponding values of potential at various points on a 
near-by surrounding “outer-boundary curve”. 

curve. Such revised values would then be employed, as 
boundary values, in proceeding with the next relaxation pass 
through the mesh. [An analogous procedure of course would 
be followed if one were to adopt an elliptical coordinate 
system (u,v), for which harmonic terms would be of the 
form e-mu times circular functions of argument mv]. 

In the work summarized here, we have made a practical 
application of the techniques just described, with particular 
application to the use of the relaxation program POISSON as 
applied to the design of superconducting magnets for 
advanced particle accelerators. It is evident that in such 
work one takes advantage of such intrinsic symmetries as 
may be present in the geometrical configuration and current 
distribution for the problem of interest. One realizes also 
that, in practice, there may be a large number of mesh 
points along the inner (circular) curve whereon one 
constructs a harmonic representation of the potential and 
(especially for circular boundaries) such points may have a 
quite unequal spacing. Under such circumstances it may 
well be expedient, as we indicate, to base the analysis on a 
restricted number of trigonometric coefficients and to 
compute these coefficients by a weighted least-squares 
evaluation of the data. 

The following note includes a description of the 
equations introduced into our operating POISSON program, 
and this material is followed by some illustrative examples. 

Analysis 

Consider the case where a circular arc of radius 
r = R - H divides space into two regions, an inner one which 
includes all current sources and magnetic iron, and an outer 
one which is in free space (hereafter referred to as the 
“universe”). Since the free space region is infinite we shall 
arbitrarily limit it by a secondary circular arc of radius 
r = R. Both circular arcs are an assembly of connecting 
mesh points such as the one generated by the program 
LAT.1 ICE. If we know the vector potential for each mesh 
point on r = R - H (e.g. calculated by POISSON), we would 
like to find the vector potential at each mesh point on r = R, 
so that such values may be employed as provisional boundary 
values in a subsequent relaxation pass through the entire 
mesh. This is expressed as: 

*outer 
k 

= ; Ekn AAnner (1) 
n=l 

A is the vector potential and E is a working matrix, and 
the summation is over the entire mesh points of the inner 
arc. 

*This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, High Energy 
Physics Division, U.S. Dept. of Energy, under Contract No. DE-AC03-76SF00098. 

tDevelopment of the work presented here has been summarized in LBL. Reports LBL-17064 (formerly L-BID-887), LBL-18063, 
LBL-18798, and LBL-19050 (Lawrence Berkeley Laboratory, 1984-85). 

0018-9399/8511ooO-3722$01.000 1985 IEEE 

© 1985 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers

or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.



3723 

In the free space region the vector potential can be 
expressed as a sum of harmonic terms, each employing 
powers of l/r. 

The vector potential A of mesh point i on the circular 
arc r is expressed in terms of a series of functions FL (9), 
their coefficients Dt and the problem type symmetry ojL. 

Summing over the N boundary points on the radius r, 
the difference between the calculated vector potential 
values and the relaxed ones is minimized with respect to Dk 

2 

Min: OF, FI1 (ei) - Ai (3) 

The number of harmonic terms has been reduced to m and 
the weight factors Wi have been introduced to take care of 
an uneven distribution of mesh points along the boundary. 

Following the minimization process we arrive at: 

where: 

Mij Dj r-j = Vi 

j=l 

N 

Mij = C Wn Fi (B,) Fj (e,) 
n=l 

i. j = 1, 2, 3 

N 

Vi = c W,, Fi (enI A,, 
n=l 

Solving for Dj on the inner arc r = R - H we get 

Dj = E (R-li)aj 
i=l 

(M-‘)ji Vinner 

(4) 

m 

(5) 

Using Eq. (2) on the outer arc r : R and substituting the 
expressions for Dj and Vi we arrive at (Eq. 1) 

Aouter 
k = i, Ekn AAnner 

where 

Ekn = ; ; (v)' Wn (M-l) ji Fj (0,) Fi(en) 

i=l j=] 

We put an arbitrary upper limit on the number of 
harmonics m ( 50. 

Two Dimensional Case with Plane-Polar Coordinates 

a and I3 are integer division of : a = 5 ; +y 

Two Dimensional Problems with Elliptic!1 Cylindrical 
Coordinates 

We replace the two circular arcs with two confocal 
ellipses and employ elliptic cylindrical coordinates. 

(.q)“j = [ :; 1 ;i:l’ 

! 

a and b are the semi-axes and v = tan-l[(y/x)/(b/a)], 

Axis-Symmetry Problems with Polar Coordinates 

Here we consider cases which posses symmetry with 
respect to revolution around the Z axis. In a cylindrical 
geometry the flux lines are represented by the product p Ag, 
where p = rsin 8. The program POISSON is written in such a 
way that this product is the one which is being relaxed. 

sin 8 P ’ (cos e) 

F&O)= 
=9. 

- . 
’ 

7. “a = R, -1 5 cos 8 2 1 

PA (u) are the associated Legendre functions. 

Axisymmetrical Problems with Prolate Spheroidal 
Coordinates 

We replace the circular arcs with two confocal 
ellipsoids. It then becomes permissible to introduce terms 
in a development of Aa that involve 

sinv P’ (cosv) 

F&v) = - “a - 

aL 

(q$ =pEJj yp;~:;; ; ~ = f 
Hrr. (II) is a normalized 

f 
unction derived from the 

associa&d Le endre function 0, (n), n is the eccentricity, 
and c = (a2 - b%)t/2. 

If an externally imposed field or a known external 
circulation is present, the vector potential representing such 
contributions can be subtracted from the potential on the 
inner circular curve prior to applying the boundary relations 
presented here. Corresponding potential values for the 
external field or circulation then are added to the values so 
transferred to the outer curve. 

The harmonic functions F,k (9) are a combination of the 
trigonometric functions SIN and COS. It is, however, 
convenient to express them in the following way 
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POISSON relaxation of two dimensional Cartesian problem of various symmetries (a), and no symmetry (b), using both circular 
and elliptical boundaries. Case (b) was checked and found to be in good agreement with analytical calculation. 
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Relaxed flux lines -- in a SSC dipole (c) and quadrupole (d) - - are magnified along the boundary by choosing only lines which 
leak out from the iron (Reference Design A). 

(e) 
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POISSON relaxation of axisymmetrical problems -- including iron and possible symmetries. Selected flux along the boundary 
is plotted in case (e). Case (f), for both circular and elliptical boundaries, was checked and found to be in good agreement with 
analytical calculation. 


