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MAGNETIC FIELD COMPUTATIONS OF FRINGE FIELDS 
BETWEEN A DIPOLE AND A QUADRUPOLE MAGNET 

L. Rinolfi, CERN, CH-1211 Geneva 23, Switzerland 
K. Preis, K.H. Richter, H. StGqner, IGTE, Austria 

The aim of this paper is to present the 
results, of 3-D calculations, on the interferences 
between a dipole and a quadrupole magnet in the CERN 
Antiproton Collector lattice. 

Introduction 

The uniformity of field in the ends OF the 
good field region of a dipole is affected by the 
proximity of other magnets. In the ACqL ring where 
maqnets are short and of large2 aperture , this effect 
deserves particular attention . 

With a configuration as shown in Figure 1, it 
was planned to study: 
- the end field of the dipole in the presence of an 

unexcited quadrupole; 
- the end field of the quadrupole in the presence of 

an unexcited dipole; 
- the end fields of the dipole and the quadrupole 

with both at nominal current. 
We describe here the first case where the 

quadrupole is simulated by a plate with the same 
permeability pr as the dipole iron. The angle is 
7.5' and the distance between the plate and the centre 
of the dipole face is 0.495 m (Fig. 2). For compa- 
rison, computations were ma$e with a plate parallel to 
the end face of the dipole . 

Fig. 1: :~;~~equadrupole arranqement in the ACOL 

Fiq. 2: Top view of dipole and tilted plate 

Finite element software packaqe 

To calculate the magnetic field distribution 
within the dipole, the Finite Element Method (FEM) is 
used. The three-dimensional (3-D) software package 
for numerical calculations was developed at IGTE 
(Institute of foundations and theory of electrical 
engineering) at the Technical University of Graz, 
Austria. The software package is based 01: 20-noded 
higher order isoparametric finite elements . 

Mathematical description 

The field problem under consideration can be 
described by the well-known Maxwell equations: 

curl t? = Jk(l);curl < q z (2);div &I (3);8+= ut? (4) 

where ;t, is t$e impqsed current density, L? the 
electric field, H and B are the magnetic excitation 
and magnetic flux density, respectively. The magnetic 
permeability ur is assumed to be isotropic and 
constant. 

In our case of stationary fields, the Maxwell 
$quations (I) and (2) are decoupled, whit? means that 
E, which causes the current density .e, can be 
expressed by inteoration of the equation (2): 

< : -grad $ (5) 

where 4 is the electrical scalar potential. 

Since the divergence of ?I is zero, the maqne- 
tic flux density,B can be described by a- magnetic 
vector potential A 

e’ : curl A’ (6) 
Substituting d in eq. (1) and usinq equations 

(4) and (61, one obtains 

curl (U curl +A) = 3, (7) 

where u =1/p is the magnetic reluctivity. 
Introducing vector identities, equation (7) becomes 

grad u x curl A + U grad div A - Uo4+ = 3, (8) 

Imposing the condition div > q 0, we obtain . 
our final differential equation 

grad u x curl A’ - ud q J’, (9) 

which has+ to be solved for the magnetic vector 
potential A. 

The boundary conditions for our problem are 
restricted to Dirichlet and homogeneous Neumann 
boundary types. 

6 
Usinq the FEM, the magnetic vector potential 

the current density Je and the magnetic 
reluctivity u can be expressed by 

,‘=i NiFCi (IO) 
i=l 

CYe = i Ni ;ei 
i-j 

(II) 

U= j NiT (12) 
i=l 
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The deviation from uniformity is characterized 
by 

@By = 3 -1 

R, 
(16) 

80 

where B, is the maqnetic field at the centre of the 

for each finitegelement. The Ni's are the so-called 
shape functions which are functions of the local 
coordinates of a finite element 2nd n is the number 
of nodes (20 in our case!. The Ai's are the unknown 

g:; v,:,pg a',"e" ;y;;& ";g; y&y";; ::: 

current density and reluctivity, respectively. 

Applying Calerkins method and equations (IO to 
12) for solving equation (91, we obtain a volume 
integral over the domain n for each finite element: 

/ N.[grad( 1 Niui) x curl( lNi il - 1 NiuiA ( y N&) 
R J 

- lNi !ei]dQ= 0 (13) 

Integrating Equ. (13) by pasts and introducing the 
adequate boundary conditions for the finite elements 
leads to a set of linear equations which can be 
written as 

[k]&}= b} (14) 

for each finite element. The solving procedure 
applied in the 3-D FEM software package is the 
conjugate gradient method precondition&d by an 
incomplete Cholesky factorization (SICCG: . 

Finite element model of the arranqement 

The geometry of the dipole is shown in Fig. 3. 

Fiq. 3: Model of dipole for numeric field 
calculations 

The final 3-D structure consists of 18 layers 
with 5184 finite elements. The total number of 
unknowns (nodal values of components of the magnetic 
vector potential) is 58500. 

Dipole end fields 

The dipole has a magnetic field B'which varies 
accross the aperture due to end fields and other 
perturbations. 

In order to respect boundary conditions in the 
dipole, there is only the vertical component By in 
the median plane x : 0, y = 0. We expand By as 
follows 

By = B. (1 + blx + b2x2 + . ..) (15) 

The odd terms b, vanish when there is symmetry. 

magnet. 
For a beam which is passing through a magnet, 

the relevant quantity is the integrated field through 
the magnet along the z axis: 

By(x,y,d dz (17) 

The (Zn-pole) components of the field are derived 
from harmonic analysis of the integrated field IF 

IF = +Im 
_oD 

IF 

dipole, 

8 dz = 7m (B + iB )dz =,ID an(x + iy)" (18) 
-- Y x 

In the median plane B,= 0, therefore 

q ao+ aIx + a2? lz + a$ 3 + . ..(19) 

The coefficients a 0, al, a2 . . . are called 
quadrupole, sextupole . . . components. 
The variation of IF is 

MF 
18 dz 
0 Y -= - 1 

'Fo 
x=0 
y=o 

(20) 

For computational convenience, the integrals are taken 
from the centre of the magnet to infinity. 

From the above quantities we define an effec- 
tive length for the magnet: 

a. = i! f-8 (x, y, z) dz 
eff B 0 y 

and A'leff = Jeff - PO 
% --jr--- 

where J$ is 

y=O, z) dz 

Using equation (19) we have 

43 ;O =--.-- 
0 

(Zl! 

(22) 

(23) 

(24) 

The end field contribution begins with al (no 
symmetry) or a2 (with symmetry). The fundamental term 
ag is,by definition, included in the effective length. 

All variations of these quantities will be 
considered within the good field region of the dipole, 
x = + 186 mm. 

Sextupole term due to end field only 

The dipole studied here is a combination of 
window-frame and H magnet types. The permeability is 
assumed to be uniform and equal to 
The current density is constant: coilkr=l 'i',, 

2.469 x IO6 A/m2 and coil 2 has 2.R72 x 10 6 A/m2. 

From Parzen's formula7, we qet 

b =7x10-3m-2 2 
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Dipole with tilted plate simulatinq a quadrupole 

In this case, there is no symmetry and all 
terms of equaticn (15) can be present. 

From the results obtained by the model descri- 
bed above, we plot the curve my/B, versus x 
!Fiqure 4). 

Fiq. 4: Magnetic field in the median plane 

Within the limited accuracy of this curve 
(due to limitations from the mesh), the field B in the 
median plane x=0, y-0, does not depart from 8, up to 
x q + 14 cm. The results obtained for the integrated 
field IF (Figure 5) are very accurate. The effect of 
the tilted plate shows up in the slope of the curve. L 

Curve fittinq for magnetic field, inteqrated 
field and effective length give the values summarized 
in Table 1. 

fiq. 5: Integrated field in the median plane 

Next, we consider the effective length 
A$ff/9.0 plotted in Figure 6. 

Fiq. 6: Effective length in the median plane 

Table 1: Multipole components from the studied 
confioi!ration 

h = 0.94: m 

q : 0.066 ml 

0 
Y 

49 /R 
!I 0 

m 
IF : 1 B dr 

0 Y 

.+/IF 
0 

1 efF (half dIpale) 

Alerr i 2, 

'EefF - p2 

nl’.; 

- 
(1) 

i.m 

m 

- 

; T txore- 
t*ca1 
raluet; 

1.600 

1.56104 

0.9?565 

At tha 
centre 
OF 

dlpolr 
x : 0 

1.63? 

0 

1.69122 

a 

1 .OJJlZ 

0 

4t the edqe UT qacd 
f1eid req1on 

_. 

r--7 
x = - 18 cm x I + 18 cm 

1.639 i.6?9 

1.2 x w3 1.: x ,o- 
3 

1.63958 I.69218 

-0.97 x ,c- 3 0.5: * w3 

1.03086 1 ."JZti5 

-2.2 x la- 3 -0.65 x IO- 

1.13 I.)2 

Table 2 gives a summary of the dipole charac- 
teristics pertubed by the vicinity of a tilted plate 
simulating a quadrupole. 

Conclusion 

The results of the computation show errors 
which are very small and while it is necessary to cor- 
rect them, this is within the range of correction 
techniques by shimminq used to linearise the field. 
One obvious improvement. might be a full three dimen- 
sion model of an excited neighbouring magnet. 
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