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Introduction 

In the Voss-Weiland scheme of wake field acceleration’ a 
high current, ring-shaped driving bunch is used to accelerate a 
low current beam following along on axis. In such a structure, 
the transformer ratio, i.e. the ratio of the maximum voltage 
that can be gained by the on-axis beam and the voltage lost 
by the driving beam, can be large. In contrast, it has been 
observed that for an arrangement in which driving and driven 
bunches follow the same path, and where the current distribu- 
tion of both bunches is gaussian, the transformer ratio is not 

normally greater than two.’ This paper explores some of the 
possibilities and limitations of a collinear acceleration scheme. 
In addition to its application to wake field acceleration in struc- 
tures, this study is also of interest for the understanding of the 

plasma wake field accelerator. 3,4 

Consider a driving bunch with current distribution I(t) 
which extends from time t = 0 to time t = T and with total 
charge Q. After traversing some length L of a structure, there 
will be a retarding potential v-(t) within the bunch, with a 
minimum value Vz. The energy U extracted from the bunch 
by the retarding potential goes into one or more modes of the 
structure, producing a potential V’(t) behind the bunch which 
reaches some maximum accelerating value V,‘. The gradient 
that can be used to accelerate a trailing bunch is therefore E, = 
C’,f,‘L. The transformer ratio is defined as R = -V,‘/V;. 

Let us assume that all the electrons in the driving bunch 
have the same initial energy eVi, and that the electrons in 
the distribution which see the maximum retarding field are 
brought to rest in distance L. Thus Vi = -V;. The efficiency 
for extracting energy from the driving beam is given by 

9 = J& = so’ I(t)v-(t) dt 
t QKZ . (1) 

It is useful to define a total loss factor ktot = U/Q2, which 
depends both on the structure and on the bunch distribution. 
Thus the charge required in the driving bunch to reach an accel- 
erating gradient E, is Q = qE,L/(Rkl,t). Ifthere is only a sin- 
gle mode with loss factor k = E,2L2/4U, then ktot = 4q2k/R2 
and 

E,LR 
Q=-. (2) 

Note that in this case R can be written as R = -m/V:. 

Four important parameters in a collinear wake field accel- 
eration scheme are the transformer ratio, the efficiency, the 
total charge and peak current in the driving bunch. In the 
following we will focus mostly on optimizing R. In the final 
section we will briefly consider some of the implications of a 
high R scheme for other machine parameters. 

Symmetric Bunches 

It can be proved5 that for a current distribution symmetric 
about its midpoint in a single mode cavity the tranformer ratio 
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can be no larger than two. The upper limit can be achieved if 
and only if V-(O) = V< for a bunch symmetric about t = 0. 
Even for symmetric bunches in actual accelerating structures, 

which have many modes, this limitation still tends to apply.2 
However, it is possible in principle to design a structure in 
which the accelerating potentials for several modes superim- 
pose maximally behind the bunch, resulting in R > 2 even for 
a symmetric bunch. Consider a two mode structure with fre- 
quencies LJ~ and tir related by UJ~ = 3wo - 6, where 6 is a small 
quantity: and with loss factors ko and ICI. The potential due to 
a bunch with current density I(t) is 

t 
V(t) = - 

/ 
I(t’) WZ(t - t’) dt’ (3) 

-co 

where K’*(t) is the longitudinal wake potential. The contri- 

bution of mode n to wZ(t) is6 2k, cos w,t. Therefore, inside 
a rectangular bunch extending from -T to T, with constant 
I(t) = I we have the retarding potential 

v-(t) = -21[2 sinwcjt + T) + zsinwr(t + T)] . (4) 

Behind the bunch (t > T) we have 

V-+(t) = -II[~cos~ctsinwoT+ $coswltsinwrT] . (51 

If we choose WOT = n/2 and kl = ko we find the mimimum 
potential inside and the maximum potential behind the bunch 
are, respectively, 

v; N 
8 kOI --_ 

3Xf2 wo 
and Vz=yF. (6) 

0 

Therefore we get R = 2fi > 2. 

This calculation can be generalized to structures with many 
modes where the frequencies are related by w, = (27~ + 1)wo + 
6, and all the loss factors are equal. It is straight forward 
to show that V- turns out td be the Fourier expansion of 
a rectangular pulse, and V; N xkoI/(2wo). The maximum 
accelerating potential behind the bunch corresponds to the sum 
of all amplitudes, so VA = (4k~l/w~)(l+l/3~1/5+. . .). Thus 
the transformer ratio becomes R x (8/?r)(l+ l/3 + l/5 + . .). 
It can be rightly argued that such a structure is unphysical. 
On the other hand there is no reason to believe that the two- 
mode structure described above is not realizable. However, the 
v? gain in transformer ratio over the single mode case is still 
quite modest. 

Asymmetric Bunches 

We next consider the case of an asymmetric driving bunch. 
Take as an example a growing triangular bunch in a single 
mode cavity. In practice such a driving bunch has been used in 

autoacceleration experiments 
7 

to acceIerate traihng particles. 
Let I(t) = Iwt for 0 < t < T and I(t) = 0 otherwise. For 
simplicity let the bunch length be T = 27rN/w, where N is a 
positive integer. Then within the bunch 

t 
V-(t) = -2kIw 

/ 
t’cosw(t -t’)dt’= -$(l -cost&), (7) 
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Fig. 1. The voltage induced by three different asymmetric current distributions. 

whereas behind the bunch 
T 

V+(t) = -2kIw 
I 

t’cosw(t - t’) dt’ = 2k1Tsinwt . (8) 

0 

Thus R = -V,‘/V; = TN. Notice that R is proportional to 
the number of ripples N in V-(t) (See Fig. la). The longer 
the current pulse we choose, the larger the transformer ratio. 
To understand this, notice that in this case all particles in the 
bunch give energy to the cavity mode: V-(t) 5 0 for all t 
within the bunch. Therefore since Vz = 2fl where U is the 
energy stored in the mode, we see that the more energy stored 
in the mode, the higher V,’ we have behind the bunch. And 
since for kqt > T, Vi no longer changes, the transformer ratio 
will continue to increase. In contrast, for a long rectangular 
pulse from -T to T we find that V-(t) x -sinw(t + T) (See 
previous section). Thus, the first half wavelength of charge 
gives energy to the mode, the next half wavelength of charge 
takes the same amount of energy from the mode, and so forth. 
Therefore making the bunch longer than half the wavelength 
will not improve the transformer ratio. 

Consider next the following current distribution: I(t) = I, 
a constant, for 0 5 t 5 n/2w and I(t) = (2/7r)lwt for a/2w 5 
t < T. This represents a growing triangular bunch preceeded 
by a quarter wavelength rectangular pulse. (We will call this 
the doorstep distribution. See Fig. lb.) In this case the 
transformer ratio becomes R = Jl + (1 - a/2 + ~7’)~. For 
T = BlrN/w, R Y 27rN. We see that the transformer ratio 
here is approximately twice that of the triangular bunch. Ex- 
cept for particles in the first quarter wavelength of the bunch 
all particles experience the same retarding potential. 

The Optimal Transformer Ratio In A Single Mode Structure 

What is the optimal transformer ratio for a single mode 
structure? From the foregoing examples we would guess that 
it would be the current distribution that causes all particles 
in the bunch to see the same retarding potential, an assertion 

that can be proven.8 

The general features of the proof are as follows: Assuming 
a case with V-(t) = VO, a constant, exists, we denote ilts stored 
energy by Uc and its transformer ratio by Ro = -2ajVi. 
Suppose there is a perturbation of the current 61(t) localized to 
the interval [to - E, to - E] that keeps the charge Q unchanged. 
When t. is small this will result in a bump in voltage 6V(t) 
whose magnitude is of order E and that is also localized to the 
same interval. It also results in an energy perturbation 6lJ of 

order ?, with SU,>O for SV20. For 6V < 0 we get 

R=-2dk(Cb+6u) <R 

vo + m-0 
0 , 

where 6\‘0 is the minimum of 6V. On the other hand if 6V > 0 
then, since 6U < 0, 

R=-2dk:uD+6u) <R 
JG 

0 
. 

(10) 

A slight extension of this argument shows that in fact any 
deviation from a constant V-(t) reduces R. 

Let us now find the current that gives a constant retarding 
potential across the bunch. From Eq. (3) we see that it is not 
possible to have a constant retarding potential starting exactly 
at the head of the bunch for regular current distributions. We 
therefore parameterize the optimal V-(t) as 

v-(t) = 
1 

(1 - epat) VQ, if 0 5 t 5 T; 
(11) 

0 otherwise . 

(See Fig. lc.) As cr + co, V-(t) approaches the constant V’c. 

By the use of the Laplace transform Eq. (3) can be inverted 
to give the current that produces a given V(t) when W’=(t) is 

known,’ i.e. 

-lflCC 

I(t) = L$ / Ll{v@)J est ds 
LWz(t)) ’ 

7-im 

(12) 

where 7 is some positive quantity which avoids integration 
along the imaginary axis of the complex plane. Applying this 
method to Eq. (11) gives 

I(t) = --$ [(a” + W2)e-Qt + w2(at - l)] , forOit<T. 
d 

(13) 
This current is a superposition of two currents: one decays ex- 
ponentially from t = 0, the other is a triangular bunch. In the 
asymptotic limit (a -+ oo) the decaying exponential becomes a 

&function and we get R -+ dw. Given a bunch length 
T this is the ultimate transformer ratio for a single mode cav- 
ity. In addition, since V-(t) is constant we see from Eq. (1) 
that the efficiency r) is 100% in this case. Note also that for wT 
sufficiently large the doorstep bunch shape gives very similar 
results to the optimal case. 

Numerical Examples 

We now compare our theoretical analysis with two numer- 
ical examples: the SLAC accelerating structure (many modes) 
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and a plasma wake field accelerator (single mode). 

The SLAC Structure 

The SLAC structure is far from being an ideal single-mode 
structure. Nevertheless, it is still interesting to see how it can 
be used as a collinear wakefield accelerator. The SLAC struc- 
ture is a constant gradient disk loaded structure, with funda- 
mental frequency we/2x = 2556 MHz and with a cell length of 
3.5 cm. V(t) was calculated from Eq. (3) using a table of the 

longitudinal wake field W=(t) for SLAC.” 
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Fig. 2. A triangular bunch in the SLAC structure. 

Figure 2 shows the retarding and accelerating potentials 
due to a triangular bunch in units of volts per pica-coulomb per 
cell. The bunch length was chosen to be twice the fundamental 
wavelength. Within the bunch the retarding potential behaves 
very closely to the single mode calculation, i.e. V-(t) CC 1 - 
cos wt. However, some energy goes into the higher modes, as is 
evident by ripples on the cosine wave behind the bunch. This 
causes a degradation of the transformer ratio from the single 
mode prediction R = 27r to R = 4.86. The degradation worsens 
as the bunch length gets longer, as can be seen in Fig. 3. 
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Fig. 3. R for a triangular bunch in SLAC us. bunch 
length. The dashed line gives single mode results. 

The Plasma Wake Field AcceleratorfPWFA) 

The plasma wake field accelerator is another type of collin- 
ear wake field acceleration scheme which replaces the RF cav- 
ities by a plasma medium. Since the plasma in this scheme is 
assumed to be cold, one expects that only a single mode, i.e. 
the oscillation at the plasma frequency, will be excited. A one 
and two-halves dimensional (2, wz,vsI, vz) relativistic, electro- 

magnetic particle code is used to simulate the PWFA.’ Physi- 
cally this code corresponds to a one dimensional system where 
both the plasma and the beam extend infinitely in the trans- 
verse directions. 

Fig. 4 shows the wake electric field excited in the plasma 
due to a triangular bunch which is one wave length long. The 
system has 512 grid points and the number of charges for the 
beam and plasma are 80 and 16384, respectively. Because of 
the single mode nature of the system, the transformer ratio as 

measured from the figure is R rr r, in good agreement with 
theoretical prediction. Other simulations with different bunch 

shapes also show good agreement with the theory. 11 
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Fig. 4. Wake field of a triangular bunch in a plasma. 

Discussion 

As a practical example, consider an accelerator operating 
at X = 5 cm with a desired gradient of 100 MV/m. We choose 
a transformer ratio of 100, so that an energy loss by the driving 
bunch of lMV/m must be made up, possibly by induction units 
or low-frequency RF accelerator cells spaced periodically along 
the accelerator. In order to achieve R = 100, a doorstep bunch 
with length CT x XR/(2x) = 80 cm is needed. From Eq. (2) 
we see that the charge in the driving bunch is about 35pC for 
a typical value of k/L = 75 V/PC/m at X = 5cm, assuming 
also that 9 x 100%. The peak current at the tail of the driving 
bunch is about 25 kh. 

In this paper we have looked at some aspects of a collinear 
acceleration scheme, focusing mostly on the concept of trans- 
former ratio. A more complete study of the usefulness of such 
a scheme needs to address further questions such as transverse 
effects and the feasability of creating the very high peak current 
bunches required for high transformer ratios. 
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