University of New Mexico
Albuquerque, New Mexico 87131 and
W.B. Saylor

Los Nlamos National Laboratozy
Los Alamos, New Mexico 87544

1. Introduction

The success of linear induction ion accele-
ratcrs for accelerator inertial fusion (arf) appiications [1] depends largely on innevations in pulsed power technology. There are tignt constraints on the accuracy of accelerating voltage wavetorms to maintain a low momentum spread. Furthermore, the non-relativistic ion oeams may be subject to a klystron-- ike interaction with the accelerating cavities $[2,3:$, leading to enhancec momentum spread. In this pacer, we describe a novel 7igh power switch with a demonstrated ability to interrupt 300 A at 20 kv in less than 60 ns. The switch may alluw the replacement of pulse modulators in linear irduction accelerators with hard tube pulsers. A power system based on a rard tube pulser could solve the longitudinal instability problem while maintaining high energy transfer efficiency. The prodlem of longitudinal beam control in ion induction linacs is reviewed in section 2. Sectiul 3 describes the principles of the plasme flow switch. Experimental results are summarized in Section 4.

2. Longitudinal instabilities in
 pulseline-criven. ion induction inacs

Linear induction accelerator gaps are typi-ca-ly driven by a transmission line or pulse forming network. The characteristic impedance of the modulator is matched to the parallel combination of the beam and cavity darlpiny resistars to provide a constant voltage over the beam pulse. We denote the damping resistar impedance as $a \mathcal{F}$, where R_{0} is the beam impedance. Variations of jeam current are decoupled from the cavity voltage when a is small. This limit is not usefui for AIF since it

1. Hard tube pulser. A) Hy power source, B) Isolation =esistor, C) Capacitor bank, D; Jpening-closing switch, E) Indiction cavity leakage circuit, F) Beam load.
implies low efficiency for energy transfer from the modulator to the beam. If a is high, variations in beam current can lead to an interaction of non-redativistic beams with the cavity oircuit, resultirg in growth of the beam momertum spread.

Computer FIC simuiations of beam transport [2] (neglecting space charge effects and reactive components of she cavity circuit) lead to the conclusion trat the momentum spread for stable beam transport is relatec to the damping resistor parameter by $\Delta p_{1} / p_{z}>a /(a+2)$. A typicai Iequirement for mofenzum spread is $\Delta p_{7} / p_{7}<10^{-3}[4]$. This implies small a and an entrgy transfer efficiercy of cnly 0.1 per cent. In eari-y AIF induction lirac conceptual designs, the beams had s=rang longitudinal space charge forces that would counteract bunching instabilities. Fecently, there has been increased interest in multi-beam transport [5]. This approach reduces trarsverse space charge forces to aid in the preservation of low transverse emittance. Jnfortunately, there is a corresponding cecrease in longitudinal space charge forzes, increasirg the susceptibility tj longitutinal instabilities. We have extended the model of Ref. 2 to include space charge force in the $1-0$ limit. computer studies to determine requirements on pulsed power driving circuits for longitudinal stability are underway.

An effective solution $=0$ the problem of longitudinal dynamics is the use of a hard tube pulser instead of a pulse forming network. The nard tube pulser, illustrated in FIGURE, is a nigh capacitance bank connected directly to the gap. The current draw from the bank in a pulse makes a negligible change in the stored charge. The gap voltage is relatively indepedent of the beam current; therefore, a damping resistor is unneressary. The keystone of the circuit is the harc tube switch. It must be capable of both closing and upering the circuit rapialy. The switch must terminate current compietely after the pulse; otherwise, the erergy in the reservoir bank will discharge as leakage current through the incuctive cavity. In relatively iow power appliratinns, the hard tube is usually a vacuum tricde. Vacuum triodes have too righ an impedance to be appiied to ion incuction linacs. The switch must rave a conductingstate impedance less than 1Ω in order to mairtain the stability of a beam with low momentum spread.

3. Plasma flow switcn

The switch that we deveioped utilizes eleztron conductior zhrough a plasma filled gap. Therefore, iri lie conducting state, the vol. tage drap across the switch is smali. Electron flow is controlled by a biased gric. In contrast to devices such as the thyratron and tacitron [6], there is no static gas fill. Plasma is generated external tc and independent of the power gaj. The plasma flow switch is izlustrated in FIGURE 2(a). A controlled Hulser plasma source s三concs before swicching. In the off-state, tie control grid is biased negative with respect to tie cathode. As shown in ficure 2(b), plasma electrons cannot jass through the control grid. The ions that penetrate the grid cannot cioss to the anode. Electron flow is initiated by clamping the grid potential to that of tre cathode; subsequently, plasina enters the power gap and electrons are drawn to the anode. The switch reaches its low impedance state in the lime it takes plasma to expand across the gap ($-1 \mu s$). Power flow is terminated by pulsing the grid negative, excluding eiectrons from the power gap. The switch returns to high impecance after plasma is cleazed from the gap; because of the nature of plasma erosion, the opening time can be quite rapid (-30 ns). A complete treoretical treatment of the plasma flow switch is included in Ref. 7.

2. Flasma flow switch. a) Schematic view of electrodes. b) Particle flow anc electrostatic potentia: in offostate.

4. Experimental results

The experimental apparatus is illustrated in Fig. 3. Three surface spark sources (described in Ref. 9) were driven in parallel by a low inductance capacitor bank. They generated a $5 \mu \mathrm{~s}$ plasma pulse. The plasma flux could be adjusted by varying she distance of the sources from the switch. At a 10 cm spacing, measurements with a Langmuir probe anc ion flux prote at the controi grid showed, that the plasma had a density of $3 \times 10^{11} \mathrm{~cm}^{-3}$ and a
directed ion velocity of $2 \times 10^{6} \mathrm{~cm} / \mathrm{g}$. The available electron flux was $-10 \mathrm{~A} / \mathrm{cm}^{2}$. The shot-to-shot flux reproducibiaity was -5 per cent. The grid voltage was normally clamped to the cathode potentiol through a 75Ω resisior. After predetermined conduction time, electron flow was extinguisned by a negative pulse on the grid, typically -400 V . The grid pulser had a risetime of 14 ns . The pulser could be configured to generate eitner a long pulse (-8 $\mu \mathrm{s}$) or a 200 ns square qulse with a 20 ns falltine. The width of the gap betweer the control grid and collector could be varied; spacings from 1 cm to 3.5 cm were used. The anoue had an area of $55 \mathrm{~cm}^{2}$. The jower circuit consisted of a $0.33 \mu=$ cajabitu: chatged lu $+0-20 \mathrm{kV}$ in series with a 50Ω resistor.

3. Experimental apparatus. A) Three surface spark plasma scurces, B) Plasma expansior chamber, C) Cathode grid, D) Ceramic standoffs, E) Control giid, F) Anoae, G) Vacuum irsulator.

A series of tests was carried with the 200 ns grid pulse. The intent was to observe features of hoth the opering and closing phases of the switch. An oscillograph showing current conduction trrough the switch at an open circuit voltage of 12.5 kV is feproduced in Fig. 4. The upper trace displays long term current variations, while the lower trace is an expansion near the switching time. The plasma reaches the switch $2.5 \mu s$ after initiation of the sparks. The time to reach fisll circuit current is determined by the risetime of the plasma flux and the time for plasmas to fill the power gap. The voltage on the switch drops aimost to zero $1 \mu s$ after the arrival of the plasma; subsequertly, the current is limited by the series resisius. When the grid is pulsed, the cuzrent drops from 220 A to 10 A in 55 ns while the voltage rises from to to 12 kV . The treoretical model of Ref. 7 oredicts an opening time of 18 ns for an instantaneous grid pulse. The longer observed time is probaoly causec by the zisetime of the grid pulser anc grid lcading immediately after switching. The residual current in the offstate represents ion conduction across the opening vacuum gap. The model of Ref. 7 predicts an erosion shea=h wicth of 0.85 cm at 200 ns after switching; the space charge limites ion zurrent at 17 kv for this gap width is 3 A , consistent with the measured current.

Corduction is resumed at the termination of zne grid pulse. The cuzrent abruptly rises to 130 A and ther approaches the circuit limited currert after a time lapse of -300 ns. The initia: curzert rise is consistert with space crarge limited bipolar electron flow from the grid aceoss the 0.85 cm vacuum gap at $5.8<\vee$. Tre switch impedance approaches zerc after a delay during which plasma expands into the vacuumn region of the switch. The predicted plasta drift iime is 400 ns. Tre switch currert has aeen successfully extinguished for a shor: pulse at open circuit voltages to 20 ky and currents to 300 A . This represents a power flow of 6 MW for 3μ before switching. As aredicted by theory, the behavicr of the switch is almosz unaffected by changes in the grid-coilector gap width.

4. Switcn current, short extinction pulse. Top: Long term current, 1 us/div. Bottom: Expansion of region shown, $200 \mathrm{~ns} / \mathrm{div}$ (12.5 kv open circuit voltage, -400 V on grid).
with a long gric pulse, switch current coulc be completely terminated. In this case, the circuit acted as a hard tube pulser. Generation of a $3.8 \mu \mathrm{~s}, 250 \mathrm{~A}, 12.5 \mathrm{kV}$ pulso across the $5 C \Omega$ - oad is illustrated in Fig. 5. In the expanced view, note the long term decay of ion curfent following switching. The decay time is consistent with the predicted plasma clearing time [7] of $0.5 \mu s$. Also note thaz for the case shown the current is reinitiated after switching ultimately leading to discharge of the casacitor. This undesirable effect could result from the falling voltage of the grid pulser or electron emission by bumbardment of the grid wy tatryelic iuns. Reinitiation of current does not occur when the open circuit voltage is reduced to to kv. we expect that the voltage range of the switch can be extended by 1) improving the grid pulse, ? ; actively initiating current flow in the switch, and 3) terminating plasma flow soor after switch opening.

5. Corclusions

Experimental results on the plasma flow switch are encouraging. The small demonstration model already has the capaoility of controlling power levels of irterest for linear induotion accelerators. Extrapolation to higrer current levels involves a straightforward increase in the size of the device. A 10 kA switch at Lhe same current density requires a collector radius of 21 cm . The low jitter aria active command of the plasma flow switch
makes it possible to gang units in parallel. Operation of the switch is in unusually good agreement wizh theory; therefore, extrapolations can be made wi=h confidence. We have not yet ubsefved a failure of the switch io extinguish current. We aze presently improving its long term holdoff ability at high voltaç. The switch compares favorably with alternate technologies [10]. The pulselength and power flow figures quotec in this paper are comparable to tacitrons; the dv/dt achieved by the plasma flow switch is ari order of magnitude higher.

We would like to thank H. Rutkowski and D. Wilson for their suggestions. This work was supported by Los Alamos Vational Laboratory.

5. Switch current, long extinction pulse. Top: Long term current, $2 \mu \mathrm{~s} / \mathrm{div}$. Bottom: Expansion of region shown, $200 \mathrm{~ns} / \mathrm{div}$. (12.5 kV open circuit voltage, -400 V peak grid voltage).

References

1. See, for instance, A. Faltens, E. Hoyer and D. Keefe, Proc. 4th Conf. High Power Electron and Ion Beams, edited by H.J. Doucet and J.M. Buzzi (Ecole Polytechnioue, Palaiseau, 1981), 751.
2. S. Humohries, Jr., J. Appl. Phys. 51, 2338 (1980).
3. S. Humprifes, Ji., J. Appl. Fhys. 53, 1334 (1982).
4. D.L. Juod, "phase Space Constraints on Induction-Linac Heavy-Iori Inertial-Fusion Igniters," (Lawrence Berkeley Laboratiory, LBL 14038, 1982).
5. "Multiple Beam Experiment Conceptual Design and Program Description" edited by D.'. Judt (Lawrence Berkeiey Laboratory, FUB-5?23, 1984).
6. E.0. Johrison, J. Olmstead and W. M. Webster, Proc. IRE, Sectember, $19>4$ and V.0. Kvornikov, et.al., Pribory i Tekhnika Eksp. 4, 108 (1972).
7. S. Humphries, Jr., M. Savage, S. Coffey and D.M. Woodall, to be published, IEEE Trans. Plasma Sci., August, 1985.
8. See, for instance, M. Kristiansen, et.al., Proc. 3rd Pulsed Power Conf., edited by I.H. Martin and A. Guenther (IEEE, 81CH1662-6, 1981), 67
9. S. Humphries, Jr., M. Savage and [.M. woodall, submitted to Appi. Phys. Lett.
10. See, for instance, T.R. Burkes, et.al., "Assessment of Switching Technology in the USSR," (Army Foreiç Science and Tech. Center, DAAK21-82-C-011:, 1984).
