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MECHANICAL LIMITATIONS IN HIGH AVERAGE POWER LINACS 

A. Walker and W. J. Gallagher '( 
Boeing Aerospace Co., Seattle, WA 98124 

The intention of providing high average power 
beams being presently proposed involves the deposition 
of large amounts of heat in the acceleration waveguide; 
the thermal qradients which result can permanently de- 
tune the RF itructure. This paper presents an outline 
of the method of analyzing such a problem, taking the 
disc-loaded transmission line as example. 

The fields of the TM-01 acceleration mode in a 
disc-loaded, slow-wave structure are:1 
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Such fields are, of course, associated with currents in 
the metallic surfaces of the waveguide, which in con- 
sequence of surface resistivity generate heat. 

Quantitatively the surface currents are equal in 
magnitude to the tangential magnetic field; thus the 
heat generated is i2Rs/2 where R, is the surface re- 
sistivity (in ohms per square) and the factor 2 arises 
from the time average of the field. 

This heat must flow through the metal substrate to 
the coolant; conductive heat flow is described by 
Fourier's equation, 

2' aT KvT+p= Pg5 (2) 

where p is a heat source per unit volume, K is the 
thermal conductivity, P the density and g the specific 
heat of the metal. Even in the steady state we require, 
therefore, a solution to Poisson's equation. 

In the general case, where the heat source is a 
distributed function, a solution may be obtained by 
means of an inverse differential operator (integral 
operator). In particular, if L is any ordinary linear 
differential operator and u and f are unknown and known 
functions, respectively, the nonhomogeneous equation 

Lu = f(x) (3) 

can be solved if an inverse operator can be found.* 
There is always such an operator, the Green's function 
G, composable from the set of solutions of the homo- 
geneous equation, which may be used as a kernel for 
integration to solve the nonhomogeneous equation. That 
is, solutions of eq(3) are 

The Green's function which is the solution of Laplace's 
equation in cylindrical coordinates where there are only 
radial variations is 

G, =ln:,rcro 
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(5) 

In the actual physical case of this discussion 
heat is generated on the surface and the problem is to 
find the temperature in r and z coordinates (since there 
are no +-variations) but for simplicity, since the discs 
are thin, a solution in r only (as if the heat were 
generated throughout the metal volume) will be of suf- 
ficient accuracy for engineering purposes. There is, 
of course, no such complication at the cavity walls; 
all the heat generated on the inside surface flows to 
the coolant, establishinq a temperature drop 

plrli 

Tb - Tc = -2nK (6) 

where p is the heat power generated per unit length, 
and Tc is surface temperature at the coolant radius, C. 

Equation (2) may now be put in the form of the 
solution to determine the temperature within the discs,3 
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In the solution, eq(7), it has been assumed for simpli- 
city that Jo(kb) = 0 where 2b is the inside waveguide 
diameter, that equal heat deposition occurs on both 
faces of the disc and that the thermal conductivity is 
not a function of temperature. 

Integrating the fields over the area of the 
aperture, 

J 
a TE *k2a4 

P= ErH$2nrdr= q6n (8) 
0 

by which the temperature at the aperture (the hottest 
region) may be expressed in terms of the power flux 
so that the coefficient in eq(7) becomes 
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It is nearly always useful to have some alternate 
confirmation that the order of magnitude derived from 
a theoretical calculation is reasonable; in some cases, 
as in the present one, the analyst does not have a 
"feel" for the answer. As a first approximation, to 
estimate whether the temperature rise at the disc aper- 
ture is tolerable (or should be investigated further), 
note that the ratio of heat losses in a disc to that in 
a spacer (periodic cavity walls) is approximately 
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which generally is of the order of unity, with most of 
the heat generated in the disc occurring near the outer 
radius. if the power attenuation per unit length is 21 
and the Dower flux P(includinq the duty factor), the 
heat power transferred by each disc is-R2IPh/n;-n being 
the number of discs per wavelength. It may be assumed, 
as an extreme case, that all the heat power generated 
in a disc must flow through the disc from the aperture 
to its outer rim. The cylindrical heat power transfer 
through a plate of thickness t, thermal conductivity, K, 
having an inner and outer temperature Ti and To and 
radii a and b, respectively, is 

P = 2-rKt(Ti - To) In $ 

For example, the SLAC 3m constant gradient wave- 
guide (21,L = .684, t = .584 cm, x = 10.5 cm) energized 
at 40 MW with 0.0032 duty cycle (128 KW) will have 
deposited in it 88 KW total heat power, or about 29 KW/m. 
The temperature rise of a disc aperture near the input 
of the auide /2a = 1.034 in. 2b = 3.284 in1 bv ea(9) 
will be about’19.4°C, whererRs = .0139 ohms/square and 
K = 4 watts/cm/OC. The heat load corresponds to about 
500 W per disc. By the conditions proposed in deriving 
eq(l1) the temperature rise of the disc aperture will 
be‘2g°C which is in reasonable agreement with the mag- 
nitude estimated from the complicated calculation. 

The consequences of a large temperature gradient 
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S, being the radial stress, Se the circumferential, a 
the thermal coefficient of expansion, E Young's modulus 
of elasticity, b the outer radius of the disc, a the 
inner, and T(r) the temperature distribution from eq(7). 

Quite evidently, the thermal problem can also be 
solved by means of a computer rogram5 or, alternatively, 
on an analogue resistor board. & 

The boundary temperature, To, is presumably estab- 
lished by means of a coolant flow rate sufficient to 
carry'away all heat generated in the steady state, 

P(KW) = 0.265(GPM) sT(deg C) (13) 

wnere P(KW) is the average power removed, in kilowatts 
GPM is the flow rate, in gal/min 
AT is the temperature rise of the coolant, in 

deg C 

The system operating temperature should be higher 
than any ambient temperature; otherwise, the cooling sys- 
tem will be pumping heat from the accelerator tunnel 
and/or moisture may collect on the machine. About 115OF 
is conventional. 

The story is not quite as simple as that outlined 
above. E. L. Chu has considered the consequences of 
the observation that the heat generated during an RF 
pulse cannot migrate more than a few 'skin' depths into 
the metal before the end of the pulse. This situation 
engenders a degenerate (or run-away) condition; owing 
to the increased skin temperature subsequent pulses will 
encounter a higher skin resistance and therefore the 
heat generated will be greater, raising the skin temoera- 
ture still further, etc. Chu's results are too compli- 
cated to summarize briefly, for which reason the reader 
is referred to his account.7 

The boundary condition stated in eq(ll), while 
necessary to establish steady state for the system, over- 
simplifies the details of the waveguide temperature. 
Convective coolant flow is characterized by being either 
laminar (viscous) or turbulent, but in either case there 
is a staanant film of fluid adherins to the metallic 
surface,-across which there exists a temperature drop. 
Heat transfer is clearly more effective when the mixing 
action of turbulent flow causes the heat to be distri- 
buted throughout the coolant, but heat transfer is re- 
duced owing to conduction through the film whose thick- 
ness is not easily defined. To circumvent this situation, 
the heat power transferred per unit area through the film 
of thickness 1 may be written8 

_ T ) 
12 (14 

h = K/l being a film coefficient of heat transfer, 
usually determined from Nusselt's number. While the 
determination of these details are beyond the scope of in the disc is that it may warp or distort, permanently 

de-tuning the waveguide in addition to recoverable this paper, being treated in any reasonable text on heat 

thermal de-tuning. There are two stresses developed power engineering, the consequence is that the wave- 

in a cylindrical plate by temperature gradients:4 guide will be hotter than the coolant and not neces- 
sarily by a fixed amount (because the viscosity of the 
fluid depends upon its temperature). 
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A slightly known relationship, used for practical 
engineering calculation is 

Nu = O.O225(Re)'* (Pr)*4 (15) 
Re being Reynold's number (D VP/D), Pr Prandtl's 
number (PC/K) and Nu Nusselts number (hD/K), where D 
is the pipe (waveguide) diameter, K the thermal con- 
ductivity of the fluid, P its density, p its viscosity, 
c its specific heat and v its flow velocity (greater 
than critical). The critical velocity occurs-when 
Revnold's number is about 2300 idimensionless). In- 
conveniently, the calculated design for clean; new pipe 
is quite in error when the conduits become fouled with 
scale, so that the designer ultimately is forced to 
rely on engineering judgment. 

Normally, a waveguide is tuned under isothermal 
conditions and the coolant flow design cannot preserve 
that situation. The two most widely used coolant 
schemes are shown in figure 1. The 'cooling tube' plan 
permits counter current flow to be more easily realized; 
the sheath plan permits greater flow rates. On the other 
hand, high flow rates, achieved by means of high veloc- 
ities, may produce vibration. The physical mechanism 
of fluid flow vibration is not clearly established. In 
one type it is thought that there are coolant passage 
and manifold pressure oscillations at very low frequen- 
cies which perpetuates itself by alternately increasing 
and decreasing injection pressure thereby varying 
coolant flow which, in turn, varies coolant chamber 
pressure. Another type at low frequencies is thought 
to be caused by noise excitation of the natural fre- 
quencies of metal parts such as the waveguide, pipe 
lines and structural parts. It is possible that some 
vibration may be associated with acoustic resonances of 
the coolant passage. Vibration may result in system 
failure by metal "fatigue," as well as producing phase 
modulation in the accelerator. As a general rule flow 
rates should be less than 7 ft/s to avoid vibration. 
In addition, high pressure systems will de-tune the 
waveguide nonuniformly, the cylindrical cavity walls 
being permanently deformed, owing to pressure 'creep.' 

The consequences of heat losses in the structure 
have not been accepted supinely, without ingenious sug- 
gestions to thwart deleterious effects: 1) Principal 
and most obvious, is the use of coolant passages in 
the disc; 2) It has also been proposed to perform the 
usual perturbation tuning of the waveguide after per- 
mittino it to distort itself at hish averaqe power; 3 
It is also possible to increase the disc thickness, ' 
accepting reduced shunt impedance per unit length; 4) 
A larger aperture would reduce the attenuation per un 
length and thereby the heat deposition (the loss in 
shunt impedance (rL) can be compensated by increased 
length per section); 5) Where applicable, a lower 

t 

operating frequency will entail larqer scale structures 
and will-have.lower attenuation per-unit length; 6) 
Some slight decrement in surface resistivity results 
from surface finish;9 a 15-micro-inch finish is a prac- 
tical limit. Acid cleanina dio results in removal of 
machine tool marks and is equal to rouge or chalk 
polishing. 
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