© 1985 |EEE. Personal use of this material is permitted. However, permission to reprint/republish this material
for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers
or lists, or to reuse any copyrighted component of thiswork in other works must be obtained from the |IEEE.

20R0

THE SPHERICAL
S. Gallagher, Zehntel,

Inc.

[EEE Transactions on Nuclear Science. Vol NS-32.

RESONATOR
, Walnut Creek, CA 94585

No. 5. October 1985

W. J. Gallagher, Boging Aerospace Co., Seattle, WA 98124

One of the earliest microwave boundary value prob-
lems to be analyzed was e1?c§r magnetic oscillations
within a spherical cavity. 1} This is curious since

such resonators have found essentially no application in
microwave engineering, doubtless partly for the reason
that such resonators were supposedly difficult to fabri-
cate.

the more r*nrwnnc since 11' fn'l]nwpd less than

the mo dwea

twenty years H. Hertz' demonstration of the validity of
Maxwell's wave equation and that electromagnetic waves
Propagated with the ve10c1ty of Tight. At that time, in
contrast to the opinions of English physicists, conti-
nental physicists generally assumed that the far-field
forces were transmitted instantaneously through space,
the nature of thch was of no importance in the trans-
mission process. 2)

Similar other early analyses in spherical coordi-
nates were largely mathematical exercises, in any case
not intended for a projected app]icatfon.s i Treatments
have also appeared in all standard texts. 4

LV)

It i

The conventional manner of solving the wave equation
is separation, by which is meant that the partial differ-
ential equation of wave propagation is reduced to an
ordinary differential equation in each coordinate. If
the coordinate planes match the geometry of the volume
the boundary conditions are then particularly simple to
apply. Inconveniently, the wave equation is separable
only in a few orthagonal, curvilinear coord1?g3e systems,
the so-called 'separable systems of Stékel' There
are, in fact, only eleven such Euclidean coordinate
systems which allow separation of the scalar wave equa-
tion in three dimensions and five such systems for the
vector wave equation.

It appears, therefore, that applicability of the
separation technique is seriously limited and that there
is need, consequently, to find other methods of solution.
Such non-analytic meth?d§ have been developed in mesh-
relaxation technigues. On the other hand, even to
this date separability has not been exhausted. A complete
solution in this method is usually understood to include
preparation of a table of values of the solution of the
second order, linear differential equation arising from
the separation technique. This process has been com-
pleted, of course, for the coordinate systems principally
used.

In addition to the general method of separability
and computer techniques there are some other artifices
to aveid Taborious or intractable equations. For example,
a real physical solution of the wave equation must alsc
satisfy Maxwell's equations; therefore some special solu-
tions, usually for the lower order modes Tay be found
directly from the circulation equations. 7) " Also, by
analogy, on the basis of perturbation arguments, it is
likely that certain oscillatory modes will exist in a
cavity. For example, the existence of the TM-010 mode
in a right circular cylinder (of height equal to the
diameter) implies the existence of a similar mode in a
spherical cavity of the same diameter. In fact, the
TM-101 mode in a spherical cavity (A= 2.29a, @ = n/Rg)
resembles the TM-010 mode in a cylindrical cavity
(» = 2.61a, Q = .8n/R,}, a being the radius, n the im-
pedance OF free space and RS the surface resistivity per
square

The homogeneous wave equat10n,
2E

V= ze Si= W

r field is ucua]}v also true for one

Sy usud

d components, depend!ng on the coor-
dinate system. For example, it is separately true for

all components in rectangular coordinates, for the axial
component only in cylindrical coordinates but not for any
component in spherical coordinates. When this simpli-
fication can be made and separation is possible, solutions
will be obtained in orthogonal functions; the remaining
field components can then be determined from Maxwell's
circulation equations.

While the scalar wave equation is separable in
spherical coordinates, it is not obvious that a scalar
solution is of any value in the determination of a
vector field.

There is no loss of genera]ity in the assumption of
a time harmonic so]ut1on to eq (1); ie., E = E{x7, x2, x3)
et by which eq (1) becomes

[ (8] -

the so-called 'Helmholtz equation', which may be viewed
as sort of Fourier transform of the wave equation. Then,
the characteristic value (w/c) is determined by boundary
conditions on the spatial solution for the vector E. A
comp]ete, persuasive solution of the vector wave equation
in spher1ca1 coordinates cannot be demonstrated br1ef1y,
but a résumé of the solution is appropriate as that is
the subject of this paper.

(2)

13)

For the axially symmetric case (3/3¢= 0) Bromwicht !
has shown that the wave equation separates completely in-
to two sets, TE(Hy, Hs, Eg) and ™ (Ep, E, H#), that is,
resonances having either radial magnetic or electric com-
ponents. In this case it is only necessary to solve the
circulation equations to completely define the field.

Alternatively, shelkunoff(9) has shown that the
general solution of the wave equation in spherical co-
ordinates results in three sorts of waves, one with the
magnetic field normal to the ray, or radius of propa-
gation, (TM), one with the electric field normal to the
ray, (TE), and one with both normal to the ray, and to
each other, (TEM); a spherical boundary of course elimi-
nates the TEM solution so that fortunately, perhaps, only
two cases exist physically in a cavity (H. = 0 or
E, = 0).

A technique of solving the spherical vector wave
equation, assuming that either Hj. or E, vanishes, is to
replace the vector with a potential or stream function
by which means the wave equation can be reduced to a
separable scalar wave equation, the solution of which is

AR 2 AX
7;?*76{—,7‘//( 2ptl). 5 g
A°G A
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In the sphere periodicity requires eg (5) to have the
solution (m = n2),

¢= cosng (6)

Eq (4) is Legendre's equation, the solution of which is

@:,,Dﬂ”/caszﬂ/ /”:0//)2; (7)

(n an integer)
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£g. (3) has solutions in Bessel functions, from which it may be seen that:
_ S X
. = / Ljr u@/k) - X
' Jhr ’”*z"ﬁf/ (8) ) = = ”ﬁx 1)
B ) 3 13
The constant k is determined from the boundary conditions; Sex) = (<X3 X/Jﬂ7l' - J‘X
for TE modes (E, = o) _
_/J/X) /X* Xz S X X_p 7L =/ oS X
L/;:#z’ /,f,_/ =0 (9) Zeroes are therefore given by
and for TM mod Hp = =
nd for T™M modes (Hy = o) S x,, =0
7 / ez V//’” 42 (/,4,,_/)/ (10) Lan X,~ %,
0f course the arguments kr are the discrete modes of = F Xzn (14
resonance. ran %o, - xZ, !
There has come into use in recent years a convenient tar z. = X (154 23p)
notation, 3n " (15~ & X54)
0/9/37 = /;ﬁg_ LZZJ;‘/aé) (1) IheseT%eE?es of eqs. {(9) and (12) are listed in Table
? y £A Z L6 113°"%
having a recursion relation(12)
LX) = f ) smx *(~0)7 f,m 1) cos x
12
f () * 1, (%) /vajf/xj/x (12)
A= i/x fre)e oy x?
TABLE I
Jm+é (Xn) =0 TEm,n Modes
B\Q 1 2 3 4 5 6 7
1 4.4934 7.7253 10.9041 14.0662 17.2208 20.3713 23.5195
2 5.7635 9.0950 12.3229 15.5146 18.6890 21.8539
3 6.9879 10.4171 13.6980 16.9236 20.1218 23.3042
4 8.1826 11.7049 15.0397 18.3013 21.5254 24.7276
5 9.3558 12.9665 16.3547 19.6532 22.9046
6 10.5128 14.2074 17.6480 20.9835 24,2628
7 11.6570 15.4313 18.9230 22.2953
8 12.7908 16.6410 20.1825 23.5913
9 13.9158 14.8386 21.4285 24.8732
10 15.0335 19.0259 22.6627 When resonance does not depend on one of the dimen-
1 16.1447 20.2039 23.8865 sions (35 it does not, eg. in those modes w;t?fzerot
indices) the applicable numerator of the indifferen
12 17.2505 21.3740 dimension vanishes, as for the TE-101 mode in the above
13 18.3513 22.5368 box, where O = 0 and
14 19.4477  23.6932 () = (2Z) "~ /—7) (18)
15 20.5402 24.8438 In addition, in some cases the transverse dimensions are
1nd1st1ngu1shab1e as in the r1ght circular cylinder),
16 21.6292
//7/[/ /Daﬂ 19
17 22.71%0 = = (19)
18 23.7978 L and r being the length and rad1us, n an integer and
Py then -th root of them-th order Bessel function of the
13 24.8780 first kind (or its derivative).

In the general theory of cavity resonances it has
been observed that resonance is given by

_ //4/+/BJ 0)*
) (67 7

where a, b and d are transverse d1mens1ons, and A, B and
Dare constants appropriate to the cavity geometry and
nature of the electromagnetlc mode. As an example, for
the TM»]]] mode in a rectangu]ar box eg.(16) becomes

/qur)‘ //zz ) (/ r )2

(16)

(17)

where the transverse dimensions are a and d and the length

L.

In the spherical resonator it is doubtless obvious
that a supposable efflourescence of indices will not occur
because the geometry implies multiple degeneracy.

On the other hand, this degeneracy engenders a pe-
culiar situation; any particular mode, eg. TXy . which
arises as the n-th root of the m-th order spher1681
Bessel function, has#+1 degeneracies (0 < p g n), all of
which have the same frequency (and, curiously enough, the
same Q), although very different field configurations.
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TABLE T1
o o |
—— IV X msr () =0 T M, modes
a x z :

1 2 3 5 6. 7
2.7437 6.1168 9.3166 12.4859 15.6439 18.7963 21.9455
3.8202 7.4431 10.7130 13.9205 17.1027 20.2720
4.9734 8.7218 12.0636 15.3136 18.5242 21.7139
6.0620 9.9675 13.3801 16.6742 19.9154
7.1402 11.1830 14.6701 18.0085 21.2815
8.2109 12.3915 15.9387 19.3212

11.3910 15.9174 19.6485
12.4434 17.0723 20.8603
13.4929 18.2193

9.2755 13.5787 17.1896 20.6154
10.3353 14.7534 18.4255 21.8939

14.5398 19.3593
15.5845 20.4932
16.6272 21.6216
17.6682
18.7076
19.7455
20.7821
19 21.8175

Despite the opening remark of this paper it has re-  (3)
cently been proposed at CERN-LEP to implement the Sfiaford
SLED energy storage scheme using a spherical cavity .
The intent included provision for tuning by means of (4)
perturbation, which presumably did not "work" well. The

diameter of a sphere is determined by the temperature of
the material, Ao

—== = XQa 20

A7 _ (20)
o being the coefficient of thermal expansion (16 ppm per
deg. C for copper). Therefore, the temperature tuning

range is given by A

~—=-wd7 (21)

(1)
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which indicates that temperature regulation of the cavity (5)
would provide adeguate tuning range, though of slow re-
sponse time.

There is a widely known rule that the number of res-
onances (N} of a cavity of volume V having wave1engf?i)
.greater than a specified value {iy) is of the order (6)

N= L= L (22)
For a spherical cavity, noting that r/X = ppn/2m,
N //2)23 (23) 7)
=(3n) )
Table I1I presents a count of resonances (including de-
generacies, (9)
TABLE 111 (10)
Pmn N{eq 22) M(Tables I & II)
— — (1)
6 8

’ (12)

10 45 46

15 152 131

20 360 290
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