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One of the earliest microwave boundary value prob- 
lems to be analyzed was el c romagnetic oscillations 
within a soherical cavitv. PIF This is curious since 
such resonators have found essentially no application in 
microwave engineering, doubtless partly for the reason 
that such resonators were supposedly difficult to fabri- 
cate. 
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for the total vector field is usually also true for one 
or more of the field components, depending on the coor- 
dinate system. For example, it is separately true for 

It is the more curious since it followed less than 
twenty years H. Hertz' demonstration of the validity of 
Maxwell's wave equation and that electromagnetic waves 
Prooaqated with the velocity of light. At that time, in 

I  

contrast to the opinions of-English physicists, conti- 
nental ohvsicists senerallv assumed that the far-field 
forces weqe transmitted instantaneously through space, 
the nature of wh'ch was of no importance in the trans- 
mission process.12) 

Similar other early analyses in spherical coordi- 
nates were largely mathematical exercises 
not intended for a projected application. ~3 

'n any case 

I1 have also appeared in all standard texts. 4 . 
Treatments 

The conventional manner of solving the wave equation 
is separation, by which is meant that the partial differ- 
ential equation of wave propagation is reduced to an 
ordinary differential equation in each coordinate. If 
the coordinate planes match the geometry of the volume 
the boundary conditions are then particularly simple to 
apply. Inconveniently, the wave equation is separable 
only in a few orthogonal, curvilinear coordi 

'7Q 
e systems, 

the so-called 'separable systems of Stakel'. There 
are, in fact, only eleven such Euclidean coordinate 
systems which allow separation of the scalar wave equa- 
tion in three dimensions and five such systems for the 
vector wave equation. 

It appears, therefore, that applicability of the 
separation. technique is seriously limited and that there 

.*' is need, consequently, to find other methods of solution. 
Such non-analytic meth d have been developed in mesh- 
relaxation techniques. (165 On the other hand, even to 
this date separability has not been exhausted. A complete 
solution in this method is usually understood to include 
preparation of a table of values of the solution of the 
second order, linear differential equation arisinq from 
the separation technique. This process has been com- 
pleted, of course, for the coordinate systems principally 
used. 

In addition to the general method of separability 
and computer techniques there are some other artifices 
to avoid laborious or intractable equations. For example, 
a real physical solution of the wave equation must alS0 
satisfy Maxwell's equations; therefore some special SO~U- 
tions, usually for the lower order modes 
directly from the circulation equations. (7yYA;:oy;;d 
analogy, on the basis of perturbation arguments, it is 
likely that certain oscillatory modes will exist in a 
cavity. For example, the existence of the TM-010 mode 
in a right circular cylinder (of height equal to the 
diameter) implies the existence of a similar mode in a 
spherical cavity of the same diameter. In fact, the 
TM-101 mode in a spherical cavity (X= 2.29a, Q = n/R,) 
resembles the TM-010 mode in a cylindrical cavity 
(?L = 2.61a, Q = .8n/R,), a,being the radius, n the im- 
pedance o 
square.j8 f 

free space and Rs the surface resistivity per 

The homooeneous wave equation, < 2 
V’E= && g 

all components in rectangular coordinates, for the axial 
component only in cylindrical coordinates but not for any 
component in spherical coordinates. When this simpli- 
fication can be made and separation is possible, solutions 
will be obtained in orthogonal functions; the remaining 
field components can then be determined from Maxwell's 
circulation equations. 

While the scalar wave equation is separable in 
spherical coordinates, it is not obvious that a scalar 
solution is of any value in the determination of a 
vector field. 

There is no loss of generality in the assumption of 
a time harmonic solution to eg (1); ie,, E = E(x1, x2, x3) 
e-Jut, by which eq (1) becomes 

t.2 1 

the so-called 'Helmholtz equation', which may be viewed 
as sort of Fourier transform of the wave equation. Then, 
the characteristic value (w/c) is determined by boundary 
conditions on the spatial solution for the vector E. A 
complete, persuasive solution of the vector wave equation 
in spherical coordinates cannot be demonstrated briefly, 
but a re'sume'of the solution is appropriate as that is 
the subject of this paper. 

For the axially symmetric case (a/a?= 0) Bromwich (13) 

has shown that the wave equation separates completely in- 
to two sets, TE(Hr, H+, Ea) and TM (E,, Eg, H#), that is, 
resonances having either radial magnetic or electric com- 
ponents. In this case it is only necessary to solve the 
circulation equations to completely define the field. 

Alternatively, Shelkunoff(g) has shown that the 
general solution of the wave equation in spherical co- 
ordinates results in three sorts of waves, one with the 
magnetic field normal to the ray, or radius of propa- 
aation. (TM). one with the electric field normal to the 
ray, (TE), and one with both normal to the ray, and to 
each other, (TEM); a spherical boundary of course elimi- 
nates the TEM solution so that fortunately, perhaps, only 
two cases exist physically in a cavity (H, = 0 or 
E, = 0). 

A technique of solving the spherical vector wave 
equation, assuming that either H, or E, vanishes, is to 
replace the vector with a potential or stream function 
by which means the wave equation can be reduced to a 
separable scalar wave equation, the solution of which is 

64% 
dr’ 

+. 1&,, 
r dr / k-mc$pi 

i =U (3) 

o/Q 
d4 tcat4 $g ?wfm+~- J* = 0 (4) 

fi 
+m$5 =u (5) 

dP2 
In the sphere periodicity requires eg (5) to have the 
solution (m = n2), 

(n an integer) 

Eq (4) is Legendre's equation, the solution of which is 

0 = p,n~cos 9) /n = a,/,< . . n 5 m (7) 
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Eg. (3) has solutions in Bessel functions, from which itFflyxbe seen that: 

J!Jv = x 

(8) COT x 
X 

a I (13) 
The constant k is determined from the boundary conditions; 
for TE modes (E, = o) 

J2iA.) = ($- - j!js~x 
J3/X) = (5 - $,)mx 

J;,; /kp) = o (9) Zeroes are therefore given by 
and for TM modes (Hr = 0) J-/n x,, = 0 

“[fi J,+,(%~j=o dkr 
Of course the arguments kr are the discrete modes of 
resonance. 

(10) t a0 x,,= x,, 
>u 

tao x&, = J-y: 
Zn 

(14) 

There has come into use in recent years a convenient tuo x3, = 
X30 f/.5 + &",I 

notation, /I5 - L x$J 

(,,) These er es of eqs. (9) and (10) are listed in Table 
I & 117129 

having a recursion relation(12) 

h m 1 

1 4.4934 

2 5.7635 

3 6.9879 

4 8.1826 

5 9.3558 

6 10.5128 

7 11.6570 

8 12.7908 

9 13.9158 

10 15.0335 

11 16.1447 

12 17.2505 

13 18.3513 

14 19.4477 

15 20.5402 

16 21.6292 

17 22.7150 

18 23.7978 

19 24.8780 

J m*J (X,1 = 0 
2. 

2 

7.7253 

9.0950 

10.4171 

11.7049 

12.9665 

14.2074 

15.4313 

16.6410 

14.8386 

19.0259 

20.2039 

21.3740 

22.5368 

23.6932 

24.8438 

3 

10.9041 

12.3229 

13.6980 

15.0397 

16.3547 

17.6480 

18.9230 

20.1825 

21.4285 

22.6627 

23.8865 

In the general theory of cavity resonances it has . 
been observed that resonance 1s given by 

where a, b and d are transverse dimensions, and A, 8 and 
Dare constants appropriate to the cavity geometry and 
nature of the electromagnetic mode. As an example, for 
the TM+111 mode in a rectangular box eg.(l6) becomes 

g---I &ylf (&); [qy (17) 

where the transverse dimensions are a and d and the length 
L. 

TEm n Modes 
. 

4 5 6 7 

14.0662 17.2208 20.3713 23.5195 

15.5146 18.6890 21.8539 

16.9236 20.1218 23.3042 

18.3013 21.5254 24.7276 

19.6532 22.9046 

20.9835 24.2628 

22.2953 

23.5913 

24.8732 

When resonance does not depend on one of the dimen- 
sions (as it does not, eg. in those modes with zero 
indices) the applicable numerator of the indifferent 
dimension vanishes, as for the TE-101 mode in the above 
box, whereD = 0 and 

(18) 

In addition, in some cases the transverse dimensions are 
indistinguishable (as in the right circular cylinder), 

($y= (&y+ &/’ C.19) 
L and r being the length and radius, n an integer and 
pmn then -th root of them-th order Bessel function of the 
first kind (or its derivative). 

In the spherical resonator it is doubtless obvious 
that a supposable efflourescence of indices will not occur 
because the geometry implies multiple degeneracy. 

On the other hand, this degeneracy engenders a pe- 
culiar situation; any particular mode, eg. TX, n 
arises as the n-th root of the m-th order sphe;lE!l 

which 

Bessel function, hasntl degeneracies (0 C p 6 n), all of 

which have the same frequency (and, curiously enough, the 
same Q), although very different field configurations, 



m \ 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

TABLE II 

2.7437 

3.8202 

4.9734 

6.0620 

7.1402 

8.2109 

9.2755 

10.3353 

11.3910 

12.4434 

13.4929 

14.5398 

15.5845 

16.6272 

17.6682 

18.7076 

19.7455 

20.7821 

21.8175 

6.1168 

7.4431 

8.7218 

9.9675 

11.1890 

12.3915 

13.5787 

14.7534 

15.9174 

17.0723 

18.2193 

19.3593 

20.4932 

21.6216 

9.3166 

10.7130 

12.0636 

13.3801 

14.6701 

15.9387 

17.1896 

18.4255 

19.6485 

20.8603 

12.4859 15.6439 18.7963 21.9455 

13.9205 17.1027 20.2720 

15.3136 18.5242 21.7139 

16.6742 19.9154 

18.0085 21.2815 

19.3212 

20.6154 

21.8939 

(1) 

(2) 

Despite the opening remark of this paper it has re- (31 
cently been proposed at CERN-LEP to implement the Staaford 
SLED energy storage scheme using a spherlcal cavity . 
The intent included provision for tuning by means of (4) 
perturbation, which presumably did not "work" well. The 
diameter of a sphere is determined by the temperature of 
the material, da - = 6xa 

a!T (20) 
ci being the coefficient of thermal expansion (16 ppm per 
deg. C for copper). Therefore, the temperature tuning 
range is given by 

L&c= 
w -idT (21) IK\ 

There is a widely known rule that the number of res- 
onances (N) of a cavity of volume V having waveleng[iIil) 

,sreater than a specified value (X,) is of the order 
&-8rr1/- 

For a spherical cavity,%otint'that r/X = pmn/2n, 

(22) 

N = (&)>::, 
(23) 

7 

which indicates that temperature regulation of the cavity 'J' 
would provide adequate tuning range, though of slow re- 
sponse time. 

Table III presents a count of resonances (including de- 
generacies. 

TABLE III 

pmn N(eq 22) N(Tables I & II) 

5 6 8 

10 45 46 

15 152 131 

20 360 290 

(6) 

ii\ 

(9) 

(10) 

(11) 
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